
Py6S: A Python interface to the 6S Radiative Transfer
Model

R.T. Wilson

Geography and Environment, University of Southampton, Highfield Campus, Southampton,
SO17 1BJ, UK

Keywords: radiative transfer model, 6S, atmospheric correction, python,
scripting, methodology

1. Introduction

Radiative Transfer Models (RTMs) are widely used to simulate the passage
of solar radiation through atmospheres on Earth and other planets. They have
a range of uses including atmospheric research and solar energy system design,
and are widely used within remote sensing and Earth observation, but they are
often seen as difficult to use with respect to the numerous input and outputs
parameters. This paper outlines Py6S, a Python interface to the 6S RTM (Ver-
mote et al., 1997) designed to address these issues. Py6S allows the user to
write simple Python scripts which can set 6S input variables, run simulations
and access the outputs. Methods are also provided to perform common tasks,
such as running a simulation for a range of wavelengths. It is envisaged that
Py6S will provide a useful framework in which research on atmospheric radiative
transfer can be conducted using 6S, as well as opening the use of 6S to a wider
audience including students.

2. 6S

Second Simulation of the Satellite Signal in the Solar Spectrum (6S; Vermote
et al., 1997) is a radiative transfer model which has established itself as one of
the standard RTMs used for both remote sensing research and the creation
of operational products. The model is intermediate in complexity, between
simple RTMs such as SPCTRAL2 (Bird and Riordan, 1993) and FAR (Seidel
et al., 2010), which do not produce results of the required accuracy for many
applications, and very complex and computationally-intensive models such as
SCIATRAN (Rozanov et al., 2005), libRADTRAN (Mayer and Kylling, 2005)
and LIDORT/VLIDORT (Spurr, 2008). It has been used in the development
of new algorithms and spectral indices (for example Ceccato et al., 2002) and
is often combined with other models to produce fully-integrated models - for

Preprint submitted to Elsevier October 15, 2012

example it was used in the Kuusk and Nilson (2000) integrated forest reflectance
model.

The current version is 6SV1.1, a vector version of the original 6S code which
can simulate the atmospheric radiative transfer of polarised and non-polarised
visible and infra-red radiation under different atmospheric conditions. Parame-
ters include the atmospheric conditions, altitude of the sensor and target, wave-
length and ground reflectance (with the ability to use a number of built-in
BRDF models). An atmospheric correction mode allows the calculation of a
ground reflectance, given an at-sensor radiance or reflectance value and a set of
atmospheric parameters.

The primary simulation outputs are at-sensor reflectance and radiance, bro-
ken down into their individual components, as well as a number of other cal-
culated atmospheric parameters. Validation has shown differences of less than
0.1% when compared with MODTRAN4 (Kotchenova et al., 2006; Kotchenova
and Vermote, 2007), and Kotchenova et al. (2008) studied a number of standard
RTMs and found that 6S demonstrated the best agreement with a Monte Carlo
benchmark (within 1%). The ability of the latest version of 6S to take into
account polarisation of light is thought to be behind its increased accuracy in
many situations (Kotchenova et al., 2008).

6S is used operationally as part of the atmospheric correction procedure for
Landsat TM (Ouaidrari and Vermote, 1999), and for generating lookup tables in
the MODIS atmospheric correction procedure (Vermote and Vermeulen, 1999).
6S is also frequently used for atmospheric correction of images from a number
of sensors by end-users (for example Alencar et al., 2011; Steven et al., 2003).

2.1. Limitations in the interface

The user interface to 6S is provided through text input and output files (see
Listings 1 and 2) which have a number of issues:

• Every parameter in the input file is specified using a number, even cate-
gorical parameters, making the file difficult to read and edit.

• The input file must have exactly the correct format (including whitespace)
if it is to be read correctly by 6S, thus any small errors can lead to problems
ranging from software crashes to subtly incorrect outputs.

• It is only possible to specify one parameter set in the 6S input file, thus
running 6S for a range of parameter values (for example multiple wave-
lengths, or multiple atmospheric conditions) requires manually editing the
input file between each simulation.

• The format of the 6S output file is easy for humans to read, but hard to
extract values from automatically.

2

Listing 1: Sample 6S input file

0 (User defined)

40.0 100.0 45.0 50.0 7 23 (geometrical conditions)

8 option for Water Vapor and Ozone

3.0 3.5 Water Vapor and Ozone

4 User ’s Components

0.25 0.25 0.25 0.25

0

0.5 value

-0.2 (target level , negative value)

-3.3 (sensor level)

-1.5 -3.5 (water vapor and ozone)

0.25 (aot)

11 (chosen band)

1 (Non homogeneous surface)

2 1 0.5 (ro1 ro2 radius)

1 BRDF

-0.1 radiance (positive value)

3. Py6S

Py6S is a Python interface to the 6S model which has been developed to
address the limitations described above. By not re-implementing the model
itself, we can ensure that results produced using Py6S will be exactly the same
as results produced using 6S by itself, thus significantly reducing the amount of
testing and validation required of the Py6S code.

3.1. Features

Py6S provides a superset of the 6S features: any parameter that can be
set manually in a standard 6S input file can also be set through Py6S. Thus,
the description of features here will not focus on the scientific features of the
standard 6S model, but will focus on the improvements that Py6S provides.

• User-friendly parameter setting, with easily-accessible documen-
tation: 6S parameters can be set using a simple Python interface rather
than a cryptic input file. For example, to set the wavelength for the sim-
ulation to that of Landsat TM band 1, you simply run s.wavelength =

Wavelength(PredefinedWavelengths.Landsat TM B1). Extensive doc-
umentation is provided regarding the parameters which can be set, and
this documentation can be accessed interactively through the Python in-
terpreter.

• Helper functions making common operations simple: Manually
running 6S simulations for many wavelengths across a certain wavelength
range is a common need, but it is normally very time-consuming as it
requires much manual editing of the 6S input files. In Py6S this can be
accomplished with a single call to run vnir, or run landsat tm. Similarly,
running a simulation with many solar or view angles to produce a polar
plot showing directional reflectance effects can be accomplished with a
single call to plot and run 360.

• Plotting capabilities: Py6S links with the Matplotlib plotting library
(Hunter, 2007), allowing the results from 6S simulations to be easily plot-
ted using functions such as plot wavelengths and plot 360.

3

Listing 2: Extract from a sample 6S output file

* *

* integrated values of : *

* -------------------- *

* *

* apparent reflectance 0.0330894 appar. rad.(w/m2/sr/mic) 12.749 *

* total gaseous transmittance 0.675 *

* *

* *

* coupling aerosol -wv : *

* -------------------- *

* wv above aerosol : 0.033 wv mixed with aerosol : 0.033 *

* wv under aerosol : 0.033 *

* *

* integrated values of : *

* -------------------- *

* *

* app. polarized refl. 0.0014 app. pol. rad. (w/m2/sr/mic) 0.065 *

* direction of the plane of polarization -27.40 *

* total polarization ratio 0.043 *

* *

* *

* int. normalized values of : *

* --------------------------- *

* % of irradiance at ground level *

* % of direct irr. % of diffuse irr. % of enviro. irr *

* 0.773 0.221 0.005 *

* reflectance at satellite level *

* atm. intrin. ref. environment ref. target reflectance *

* 0.015 0.004 0.014 *

* *

* int. absolute values of *

* ----------------------- *

* irr. at ground level (w/m2/mic) *

* direct solar irr. atm. diffuse irr. environment irr *

* 453.572 127.136 3.157 *

* rad at satel. level (w/m2/sr/mic) *

* atm. intrin. rad. environment rad. target radiance *

* 5.649 1.633 5.468 *

* *

* *

* int. funct filter (in mic) int. sol. spect (in w/m2) *

* 0.1174545 185.589 *

* *

* *

* integrated values of : *

* -------------------- *

* *

* downward upward total *

* global gas. trans. : 0.68965 0.97248 0.67513 *

* water " " : 0.98573 0.98623 0.97592 *

* ozone " " : 0.70609 0.99079 0.70008 *

* co2 " " : 1.00000 1.00000 1.00000 *

* oxyg " " : 0.99344 0.99533 0.99179 *

* no2 " " : 1.00000 1.00000 1.00000 *

* ch4 " " : 1.00000 1.00000 1.00000 *

* co " " : 1.00000 1.00000 1.00000 *

* *

* *

* rayl. sca. trans. : 0.96494 0.93809 0.90520 *

* aeros. sca. " : 0.72090 0.82111 0.59194 *

* total sca. " : 0.69208 0.81074 0.56110 *

* *

* *

* *

* rayleigh aerosols total *

* *

* spherical albedo : 0.04939 0.04918 0.06820 *

* optical depth total: 0.05550 0.42021 0.47570 *

* optical depth plane: 0.01848 0.23606 0.25454 *

* reflectance I : 0.01098 0.01327 0.02175 *

* reflectance Q : 0.00118 0.00037 0.00122 *

* reflectance U : -0.00156 0.00000 -0.00173 *

* polarized reflect. : 0.00195 0.00037 0.00212 *

* degree of polar. : 17.77 2.76 9.75 *

* dir. plane polar. : -26.48 0.00 -27.43 *

* phase function I : 1.26026 0.27565 0.39051 *

* phase function Q : -0.21911 -0.00611 -0.03096 *

* phase function U : -1.19913 -0.15957 -0.28084 *

* primary deg. of pol: -0.17386 -0.02215 -0.07927 *

* sing. scat. albedo : 1.00000 0.52284 0.57850 *

* *

* *

4

• Access to all other Python functionality: Py6S does not provide a
Graphical User Interface (GUI) to 6S, as MODO (Schläpfer, 2001) does for
MODTRAN4, but instead provides an API for the Python language, which
allows a lot more flexibility. GUIs are easy to use for simple tasks, but can
make it very difficult to perform more complicated tasks which the author
may not have anticipated. By providing a Python API, code using Py6S
can do anything that is possible within the Python language. For example,
it can use all of the built-in functionality of the Python Standard Library,
as well as access other Python modules commonly used in scientific com-
puting (for example, numpy, scipy, matplotlib and python-statslib),
allowing analysis of 6S outputs to be performed within the Python envi-
ronment.

• Ability to import parameters from external data sources: Py6S
allows detailed 6S parameterisation from real-world measurements. Cur-
rently supported sources are radiosonde data from the University of Wyoming
Atmospheric Sciences department (available at http://weather.uwyo.

edu/upperair/sounding.html) and sun photometry data from the AERONET
network (Holben et al., 1998). Importing this data manually would re-
quire interpolation, unit conversion and date/time subsetting, all of which
is done automatically by the Py6S functions.

• Reproducibility: There has been a increased emphasis recently on im-
proving the reproducibility of research conducted using computational ap-
proaches in many fields (for example Baiocchi, 2007; Vandewalle et al.,
2009). By allowing a whole series of 6S simulations to be run from a
single script, and linking with other Python modules for further analysis,
Py6S allows entire research projects using 6S to be reproducible from a
single Python script.

3.2. Usage

3.2.1. Installation

As Py6S is purely an interface to 6S, the original 6S executable is required
to run Py6S. Full instructions for 6S compilation on Windows, Mac OS X and
Linux are included in the Py6S documentation. Py6S and its dependencies can
be installed from the Python Package Index with a single call to the pip utility.

3.2.2. Example Py6S scripts

This section provides a number of examples to introduce Py6S functionality;
the first example shows how to set a number of parameters through Py6S, run
the simulation, and extract some outputs:

from Py6S import *

Create an object to hold the 6S parameters

s = SixS()

Set the atmospheric profile to Tropical

s.atmos_profile = AtmosProfile.PredefinedType(AtmosProfile.Tropical)

5

Set the wavelength to 0.357um

s.wavelength = Wavelength (0.357)

Run the model and print some outputs

s.run()

print s.outputs.pixel_radiance

print s.outputs.background_radiance

print s.outputs.single_scattering_albedo

print s.outputs.transmittance_water.downward

This may not seem significantly easier than writing 6S input files manually
– although it is less error-prone – but another example shows the power of Py6S
when running a number of simulations for many wavelengths and plotting the
results, shown in Figure 1.

from Py6S import *

s = SixS()

Run the 6S simulation defined by this SixS object across the

whole VNIR wavelength range , extracting the pixel reflectance

from the model output

wavelengths , results = SixSHelpers.Wavelengths.run_vnir(s,

output_name="pixel_radiance")

Plot these results , with the y axis label set to "Pixel Radiance"

SixSHelpers.Wavelengths.plot_wavelengths(wavelengths , results ,

r"At-sensor Spectral Radiance ($W/m^2\!/\ mu m$)")

Similarly, simulations can be run for many angles, with the results plotted
as a polar contour plot (shown in Figure 2), a time-consuming task which would
require much editing of input files using the standard 6S interface, but which is
far simpler in Py6S.

from Py6S import *

s = SixS()

Set solar azimuth and zenith angles and wavelength

s.geometry.solar_a = 0

s.geometry.solar_z = 30

s.wavelength = Wavelength (0.550)

Set the directional ground reflectance to be modeled

by the Roujean BRDF model , using parameters for a pine forest

(parameters taken from Roujean et al., 1992)

s.ground_reflectance = GroundReflectance.HomogeneousRoujean (0.037 , 0.0, 0.133)

Run the model and plot the results , varying the view angle (the other

option is to vary the solar angle) and plotting the pixel radiance.

SixSHelpers.Angles.run_and_plot_360(s, ’view’, ’pixel_radiance ’,

colorbarlabel=r"At -sensor Spectral Radiance ($W/m^2\!/\ mu m$)")

Further examples including importing of real-world data and more detailed
parameterisations are provided in the documentation.

3.3. Design and Implementation

Py6S is a set of Python classes combined into the module Py6S. The main
class is SixS which has attributes for setting parameters, and a run method

6

0.4 0.6 0.8 1.0 1.2 1.4
Wavelength (µm)

0

20

40

60

80

100

120

140

160

A
t-

se
n
so

r
S
p
e
ct

ra
l
R

a
d
ia

n
ce

 (
W
/m

2 /
µ
m

)

Figure 1: An example output from the Py6S commands run vnir and plot wavelengths.

7

0°

45°

90°

135°

180°

225°

270°

315°

10

20

30

40

50

60

70

80

12.6

14.4

16.2

18.0

19.8

21.6

23.4

25.2

27.0

28.8

A
t-

se
n
so

r
S
p
e
ct

ra
l
R

a
d
ia

n
ce

 (
W
/m

2 /
µ
m

)

Figure 2: An example output from the Py6S command run and plot 360. This shows the
radiance of a surface parameterised with the Roujean Bidirectional Reflectance Distribution
Function model for a pine forest (k0 = 0.037, k1 = 0, k2 = 0.133), at 500nm. Simulations
were performed every 10 deg for both azimuth and zenith, and the yellow star denotes the
location of the sun.

8

to run the model and parse the outputs. When this method is called, the
parameters are written to a temporary input file and the standard 6S executable
is then called on the input file. The full text output from 6S is captured and
parsed to extract the numerical values of each output parameter which are then
stored in the values dictionary.

Python’s flexibility as a dynamically-typed language, allows functions to
respond to a number of different types of input parameters. This has been used
to provide a simple interface to the user, for example the Wavelength function
can be called in any of the following manners:

Wavelength of 0.43um

Wavelength (0.43)

Band from 0.43 -0.50um , with a flat response function of 1.0

Wavelength (0.43 , 0.50)

Band from 0.4 -0.41um , with a custom response function

Wavelength (0.400 , 0.410 , [0.7, 0.9, 1.0, 0.3])

A pre -defined sensor band wavelength

Wavelength(PredefinedWavelengths.LANDSAT_TM_B1)

This is far simpler to understand than a number of separate functions for
setting different types of wavelength ranges. Similarly, although the output
values are stored in a Python dictionary, they can be accessed as if they were
attributes of the output class. For example:

The standard way to access an item from a dictionary

s.outputs.values[’pixel_reflectance ’]

A cleaner and simpler way to access the output

s.outputs.pixel_reflectance

4. Conclusions

In conclusion, Py6S provides a modern environment for the scripting of 6S, a
respected radiative transfer model in the remote-sensing community. Its features
allow easy setting and modification of input variables and parameters and run-
ning of 6S simulations, it provide methods to import real-world measurements
to 6S parameters, and it makes common operations such as running a simulation
for all bands of a particular sensor easy. Py6S is released under the Lesser GNU
Public License, and is available from www.rtwilson.com/academic/py6s.

5. Acknowledgements

This work was supported by an EPSRC Doctoral Training Centre grant
(EP/G03690X/1). Thanks are due to EJ Milton and JM Nield for testing Py6S
and providing advice on the writing of this paper and OE Wilson for further
testing and advice on code design and structure.

9

6. References

Alencar, A., Asner, G., Knapp, D., Zarin, D., 2011. Temporal variability of
forest fires in eastern Amazonia. Ecological Applications 21, 2397–2412.

Baiocchi, G., 2007. Reproducible research in computational economics: guide-
lines, integrated approaches, and open source software. Computational Eco-
nomics 30, 19–40.

Bird, R., Riordan, C., 1993. Simple solar spectral model for direct and diffuse
irradiance on horizontal and tilted planes at the earth’s surface for cloudless
atmospheres. SPIE milestone series 54, 171–181.

Ceccato, P., Gobron, N., Flasse, S., Pinty, B., Tarantola, S., 2002. Designing a
spectral index to estimate vegetation water content from remote sensing data:
Part 1: Theoretical approach. Remote Sensing of Environment 82, 188–197.

Holben, B., Eck, T., Slutsker, I., Tanre, D., Buis, J., Setzer, A., Vermote,
E., Reagan, J., Kaufman, Y., Nakajima, T., et al., 1998. AERONET – a
federated instrument network and data archive for aerosol characterization.
Remote Sensing of Environment 66, 1–16.

Hunter, J.D., 2007. Matplotlib: A 2D Graphics Environment. Computing in
Science and Engineering 9, 90–95.

Kotchenova, S., Vermote, E., 2007. Validation of a vector version of the 6S
radiative transfer code for atmospheric correction of satellite data. Part II.
Homogeneous Lambertian and anisotropic surfaces. Applied Optics 46, 4455–
4464.

Kotchenova, S., Vermote, E., Levy, R., Lyapustin, A., 2008. Radiative transfer
codes for atmospheric correction and aerosol retrieval: intercomparison study.
Applied Optics 47, 2215–2226.

Kotchenova, S., Vermote, E., Matarrese, R., Klemm Jr, F., et al., 2006. Val-
idation of a vector version of the 6S radiative transfer code for atmospheric
correction of satellite data. Part I: Path radiance. Applied Optics 45, 6762–
6774.

Kuusk, A., Nilson, T., 2000. A directional multispectral forest reflectance model.
Remote Sensing of Environment 72, 244–252.

Mayer, B., Kylling, A., 2005. Technical note: The libRadtran software package
for radiative transfer calculations? description and examples of use. Atmo-
spheric Chemistry and Physics 5, 1319–1381.

Ouaidrari, H., Vermote, E., 1999. Operational atmospheric correction of Land-
sat TM data. Remote Sensing of Environment 70, 4–15.

10

Rozanov, A., Rozanov, V., Buchwitz, M., Kokhanovsky, A., Burrows, J., 2005.
SCIATRAN 2.0 – A new radiative transfer model for geophysical applications
in the 175–2400nm spectral region. Advances in Space Research 36, 1015–
1019.

Schläpfer, D., 2001. MODO: an interface to MODTRAN for the simulation of
imaging spectrometry at-sensor signals, in: 10th JPL Airborne Earth Science
Workshop. JPL, Pasadena (CA), Vol. Publication, pp. 02–1.

Seidel, F., Kokhanovsky, A., Schaepman, M., 2010. Fast and simple model
for atmospheric radiative transfer. Atmospheric Measurement Techniques 3,
1129–1141.

Spurr, R., 2008. LIDORT and VLIDORT: Linearized pseudo-spherical scalar
and vector discrete ordinate radiative transfer models for use in remote sensing
retrieval problems. Light Scattering Reviews 3 , 229–275.

Steven, M., Malthus, T., Baret, F., Xu, H., Chopping, M., 2003. Intercalibra-
tion of vegetation indices from different sensor systems. Remote Sensing of
Environment 88, 412–422.

Vandewalle, P., Kovacevic, J., Vetterli, M., 2009. Reproducible research in signal
processing. IEEE Signal Processing Magazine 26, 37–47.

Vermote, E., Tanré, D., Deuze, J., Herman, M., Morcette, J., 1997. Second
simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE
Transactions on Geoscience and Remote Sensing 35, 675–686.

Vermote, E., Vermeulen, A., 1999. Atmospheric correction algorithm: spectral
reflectances (MOD09). Algorithm Theoretical Basis Document 4.

11

