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Summary:
A method was developed to automatically select suitable atmospheric calibration sites

for satellite imagery, using a combination of various processing techniques followed by
a fuzzy classification using eCognition. Desirable characteristics for calibration sites
were identified from the literature, and implemented in a set of procedures combining
ENVI/IDL processing routines and object-based classification using eCognition. Getis-
Ord statistics were used to assess local patterns of spatial uniformity, and endmember
abundances (extracted using the SMACC algorithm) were used in a novel method to

ensure a spread of calibration sites throughout the brightness range for each band.

The method was tested on a selection of medium- and high-resolution satellite
imagery, and assessments of the quality of the selected calibration sites were provided
by comparison with the identified desirable criteria, independent assessment by an

expert and by performing an empirical line method calibration using the selected sites.

Results showed that the selected calibration sites were generally good calibration
sites. The calibration produced an average accuracy of 38%, which compares poorly
with results in the literature. However, this is unlikely to be a true reflection of the
quality of the calibration sites, as many other factors combined to produce poor

accuracies.
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1 Introduction
Atmospheric correction is an essential part of most remote sensing projects, but it can

be time-consuming and requires a skilled analyst for best results. The selection of
calibration sites for empirical methods of atmospheric correction is a vital part of the
process, and the quality of the selected sites has a major influence on the overall
accuracy of the calibration . This project will investigate the possibility of automating
the selection of these calibration sites by a method utilizing statistical information
from the image, thus allowing site selection to be performed in an objective and

repeatable manner.

Y
ldentify Candidate Areas

Y

Assess their suitability|

Y
Characterise them

Figure 1 - Overview of process in setting up NCTAC. Red area shows contribution of this project.

If this project is successful, then the resulting procedure will be of great use to the

remote sensing community. Analysts will be able to focus on the requirements of their
projects, rather than spending considerable time attempting to select sites to perform
an accurate calibration. The procedure developed by this project could prove useful in

other areas such as:

e Selection of best locations for instrumented calibration sites (such as those
suggested by the GIANTS project (Teillet et al., 2001) and the proposed Network of
Calibrated Targets for Atmospheric Correction (NCTAC; Research proposal to NERC,
E. J. Milton, personal communication, 2009)) from image data covering wide areas.

Figure 1 shows the overall process in setting up NCTAC, as defined by Prof E. J.
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Milton (personal communication, 2009) with the steps in which this project will
play a part highlighted in red.

e Selection of the most appropriate parts of large vicarious calibration sites such as
those listed on the USGS’s Calibration-Validation site listing (USGS, 2009) including
such sites as Tuz Golu, Turkey and White Sands, New Mexico.

e Selection of pseudo-invariant features for use in image-to-image normalisation (for

example Davranche et al., 2009).

This project should help atmospheric correction to become ‘operational’ (as defined by

Teillet et al., 1997).
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2 Aims and Objectives
The aim of this project is:

To develop an automated system to identify suitable targets for atmospheric correction

of medium and high resolution satellite imagery.

Three objectives have been formulated, although it should be noted that successful
completion of these objectives does not necessarily mean successful fulfilment of the

aim:

1. To develop a set of criteria which can be used to select calibration sites for
atmospheric correction.

2. Toimplement a automatic site selection routine based on these criteria using
ENVI/IDL and eCognition.

3. To assess the quality of the calibration site selection both qualitatively and

quantitatively
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3 Literature Review

3.1 Atmospheric Correction Techniques

Remote sensing data are recorded as Digital Numbers (DNs), but these should not be
used for further analysis as they are vulnerable to changes in atmospheric properties
and illumination angles. Instead most analysis is performed with data which have been
calibrated to surface reflectance factor (the ratio of directional reflected radiation to
the incident radiation). Atmospheric correction, as well as correcting for the absolute
calibration of the sensor, is required to convert DNs to the surface reflectance factor.
This correction is essential before the data is used quantitatively (as suggested by

Swain & Davis, 1978).

Table 1 provides an overview of atmospheric correction methods with their
advantages and disadvantages. It can be seen that the Empirical Line Method and
Revised Empirical Line Method provide a good ‘middle ground’ between the Dark
Object Subtraction and Radiative Transfer Model methods, and the selection of
calibration sites for these methods will be the focus of this study. The Empirical Line
Method has been used as a pre-processing step in many projects (for example, de
Jong, 1998; Malthus & Karpouzli, 2003), and commercial organisations such as
Ordnance Survey are investigating using it routinely (E. J. Milton, personal
communication, 2009). In fact, there is evidence that correction with the Empirical Line
Method can enhance certain features which make it easier for spectral feature

extraction methods to work (Dwyer et al., 1995).

High quality selection and characterisation of calibration sites is essential to providing
high quality ELM corrections (Smith & Milton, 1999). An overview of the desirable
criteria for a calibration site, according to the literature, is given in Table 2. Impervious
surfaces (such as asphalt car parks (Smith & Milton, 1999) and bright flat building
roofs) are often used for calibration sites, but these can be difficult to find in rural
areas. However, in the UK there are a large number of abandoned military airfields
(over 1,500 in total; Woodside, 2009) spread across much of the country. Impervious

surfaces (such as runways and taxiways) often still exist on these airfields, and these
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can provide good target sites. However, it should be noted that many airfields are now
subject to other uses (Gallent et al., 2000), and that the temporal stability of
unmaintained concrete is not assured. The temporal stability of bright building roofs
may be better. For example Bretz and Akbari (1997) found that, for the majority of
high-albedo roof coverings, the drop in albedo occurred mostly during the first year,

and that the albedo was relatively stable after that.

In the absence of impervious surfaces, Moran et. al. (2001) suggested that the best
rural targets are packed earth roads or car parks and rough bare soil surfaces. Large
expanses of water are often used as dark targets, particularly in NIR bands, but it
should be ensured that the water is deep enough to reduce the amount of surface glint

which contributes to the overall reflectance.

For the Empirical Line Method to work effectively, various assumptions have to hold.

These are outside of the scope of this project, but deserve mentioning:

e That there is a linear relationship between sensor Digital Number and the
reflectance of ground targets. This has recently been shown to be true for a
selection of Landsat TM pixels (Baugh & Groeneveld, 2008).

e That the same area is measured on the ground and from the satellite sensor. This
can be particularly difficult, especially when upscaling from the scale of individual
field spectroscopy measurements to satellite pixel sizes (Hamm et al., 2003). This is
one of the main reasons that uniformity is desired, as this ensures that positional
inaccuracies in the ground measurements do not cause a problem.

e That the ground measurement is taken at the same time as the sensor overpass.
This is often difficult to achieve, which is why ground calibration targets which are
stable over time are desired, as this can allow the ground measurements to be

taken at a different time from the sensor overpass.

The empirical line method has also been shown to work effectively with a range of
medium to high resolution satellite imagery such as Landsat (Moran et al., 2001) and
IKONOS (Karpouzli & Malthus, 2003), as well as airborne imagery (such as CASI; Smith
& Milton, 1999).
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Table 1 - Summary of most common methods of atmospheric correction

Method Explanation Advantages Disadvantages References

Dark Object Dark pixels are located, where the DN e Verysimple e Often provides poor results | Chavez (1996)

Subtraction (DOS)

could reasonably be expected to be zero
(for example water in the NIR
wavelengths). The non-zero values found
in these pixels are subtracted from every
other pixel in the image as these values
are assumed to represent the contribution
of atmospheric scattering.

Requires no extra data

Assumes the effect of the
atmosphere is constant
across the image

Assumes that the only effect

of the atmosphere is to
increase DNs through
atmospheric scattering

Examples of use:

Wou et al. (2005) for
correcting images of
cropland.

Cohen et al. (2003) in a
comparison of Landsat and
MODIS.

Empirical Line Method
(ELM)

Ground and satellite measurements of the
same within-scene targets are used to
produce a linear regression between
Digital Number and reflectance factor.

Can provide very high quality
calibration, assuming the
technique is carried out well
Requires no atmospheric data

Requires ground data,

preferably contemporaneous

with image acquisition

Assumes a linear relationship

between sensor DN and
ground reflectance factor

Smith and Milton (1999)
Examples of use:

de Jong (1998) in a project
examining tree damage by
volcanic activity.

Refined Empirical Line
Method (REL)

One within-scene bright target is selected
and a simple radiative transfer model is
used to provide the dark pixel DN. A linear
regression is then performed, as above.

Only requires one bright target,
making calibration site selection
easier

Combines the best of RTM and
ELM

Requires ground data,

preferably contemporaneous

with image acquisition

Assumes a linear relationship

between sensor DN and
ground reflectance factor

Moran et al. (2001)
Examples of use:

Xu and Huang (2006) to
assess the accuracy of the
method.

Kutser et al. (2005) in a
project to map organic
matter in lakes.

Radiative Transfer
Model (RTM)

A mathematical model is produced to
model known physical processes occurring
in the atmosphere, such as scattering. This
is used to estimate the ground-level
reflectance of each pixel.

Based on the physics of light
passing through the atmosphere
Produces the most accurate
calibration (when performed
with high quality atmospheric
data)

Requires computationally
intensive models to be run
Requires contemporaneous
atmospheric data to ensure
good calibration

6S (Vermote et al., 1997)
MODTRAN (Berk et al.,
1999)

Examples of use:
Matthew et al. (2000) to
assess the accuracy of the
method.
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Table 2 - Overview of the desirable criteria for atmospheric calibration sites

Criterion Justification

Large The target must cover multiple pixels. The atmospheric
adjacency effect is important here, as a dark target
surrounded by bright surfaces would need to be larger
to ensure that there are uncontaminated pixels in the
centre of the target (due to the point spread function;
Moran et al., 2001). It has been shown that a sensor
resolution to target size ratio of 1:8 is needed to ensure
that at least four pixels remain uncontaminated in the
centre of the image (Slater, 1980).

Range of reflectances Selecting very bright and very dark targets ensures that

(preferably including very both ends of the regression line are accurately placed

bright and very dark (Smith & Milton, 1999). Ensuring a spread of targets

targets) across the range of brightnesses increases the accuracy
of the regression line.

Stable over time This is important as it means that the ground target does

not need to be measured every time itis used in a
calibration, as one can assume its reflectance is the
same as last time it was measured (Moran et al., 2001).
In practice this often means selecting areas that are
devoid of vegetation (Moran et al., 2001).

It should be noted that surface such as concrete, which
are often assumed to be temporally stable, can in fact
have significant changes over time (Anderson & Milton,
2006).

Spatially homogenous Ensuring that a target is spatially homogenous reduces
the importance of positional accuracy in the ground
measurements and reduces the probability of mixed
pixels occurring.

Milton et al. (1997) showed that even very small scene
elements can have a significant effect on spatially
averaged reflectance. For example, they found an
increase of up to 12% in the reflectance of a parking lot
due to the presence of painted lines on the surface.

Flat The reflectance of sloping targets changes dramatically
with insolation angle, meaning that the time of data
acquisition becomes very important. Also, it has been
shown that the micro-topography of a surface is a major
controller of its variability in reflection (Giardino &
Brivio, 2003).
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Criterion Justification

Two or more targets Early applications of the Empirical Line Method used two
targets but recently it has been found that higher
accuracies can be gained by using larger numbers of
targets. Smith and Milton (1999) suggested that two
targets are not enough, and Karpouzli and Malthus
(2003) found that using nine targets gave a very high

accuracy.
Sites spread throughout the | A spread of sites throughout the image allows the
image variation in atmospheric conditions across the image to

be accounted for.

3.2 Object-based Image Analysis

The problem of selecting suitable calibration sites can be approached as a classification
problem, with the aim being to implement a suitable classification to differentiate
between suitable and unsuitable calibration sites. Traditional methods of classifying
remotely sensed images work on a per-pixel basis, assigning each individual pixel to
one class. Object-based image analysis is a relatively new classification technique
which involves segmenting the image into image objects (each consisting of a relatively
homogenous area containing multiple neighbouring pixels) and then classifying these
image objects, rather than the underlying pixels themselves (Blaschke et al., 2000).
This allows properties of the image objects (such as the standard deviation of the pixel
values, the area of the object or a measure of the texture of the object) to be used in

the classification.

Object-based analysis is often used with high resolution sensors such as IKONOS. For
example, Zhou & Troy (2008) used an object-oriented approach to classify the area
surrounding Baltimore City, Maryland, USA and achieved an overall accuracy of 92.3%.
Similarly, Zhou et al. (2009) found that classification of shadowed areas in high
resolution urban imagery was more accurate when using an object-based classification
method rather than a pixel-based method. Various other studies have shown that
object-based classification approaches consistently provide higher accuracies than per-
pixel approaches (Cleve et al., 2008; Thomas et al., 2003; Yan et al., 2006), especially
when used with high-resolution data (Gao & Mas, 2008).
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The quality of an object-oriented classification is dependent on the quality of the
image segmentation, which should aim to produce relatively homogenous image
objects. Meinel & Neubert (2004) emphasised this point, and provided a survey of
image segmentation programs designed for use with remotely sensed data. They
concluded that eCognition and InfoPACK (both commercial packages) provided the
best segmentation, and that many other segmentation programs produced
unacceptable results. eCognition’s segmentation routine is based on a region-growing
approach, and is described in detail in Benz et al. (2004) and Definiens Imaging

(20044a).

Lu and Weng (2007) note that object-based classification approaches allow the use of
spatial information (such as the topology of image objects) and textures as well as
allowing easy use of both raster and vector data. They recommend both object-based
image analysis and fuzzy classification (see below) as approaches to improve

classification accuracy.

In a standard classification, each unit (pixel or image object) is assigned to one class.
Fuzzy classifiers extend this to allow each pixel to belong to multiple classes, with a
percentage membership specified for each class. For example, a pixel could have a 30%
membership of the grass class, but a 70% membership of the trees class. Once a fuzzy
classification has been performed the classification can be ‘defuzzed’, resulting in a
standard classification with one class per image unit. Fuzzy classification provides an
advantage to this project, as it allows the extent to which each image object fulfils the

criteria for a calibration site to be quantified in the class membership function.

eCognition 4.0 is a commercial image processing package which combines both object-
based classification and fuzzy classification. Complex class hierarchies can be defined
using inheritance, allowing simple capture of class criteria, and each criterion can have
a fuzzy membership function, allowing a fuzzy classification map to be produced. This
is closer to the way that the human brain is thought to interpret images. Other object-
based image classification software exists (such as the ENVI Feature Extraction

module), but they are generally less powerful and less configurable than eCognition.
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3.3 Spectral Endmembers
Earlier it was stated that it is desirable for the selected atmospheric calibration sites to
have a range of reflectances, including very bright and very dark targets, and the use of

spectral endmembers provides a suitable method of achieving this.

The spectral endmembers of an image are the purest pixels in the image, and they
define the mixing space from which all other pixels are produced (Adams et al., 1993).
Thus, the spectral endmembers are the most extreme pixels in the image, and define
the edges of the pixel cloud. Therefore, if calibration sites are chosen which are close
to the spectral endmembers of the image, they are certain to be some of the brightest

and darkest pixels in each band.

This technique for selecting bright and dark pixels does not appear to be used in the
literature although some authors have combined the selection of endmembers with

object-based image analysis (for example Greiwe & Ehlers, 2005).

Various algorithms exist which extract the spectral endmembers from an image, and
Martinez et al. (2006) provide an overview of some of the most popular. Many of these
algorithms involve two stages: the extraction of the endmembers, and then the
‘spectral unmixing’ of the image to produce abundance images for each endmember
where each pixel contains the percentage of each endmember spectrum which

contributes to the spectra for that pixel.

The Pixel Purity Index (PPl; Boardman et al., 1995) projects the image data onto
random unit vectors, counting the number of times each pixel appears as an extreme
pixel in one of these projections. Using convex geometry, this count can be shown to
be related to the purity of each pixel (Boardman, 1993). It should be noted that this
procedure does not produce a list of endmembers as an output, but just an index of
pixel purity which can guide an analyst as to which pixels may be endmembers (see,
for example, the process followed in Rashed et al., 2003). The procedure is usually
performed on images that have been transformed using the Minimum Noise Fraction

(MNF; Green et al., 1988).

Page 23 of 114



Robin Wilson 421985588

The Sequential Maximum Angle Convex Cone (SMACC; Gruninger et al., 2004) method
identifies extreme vectors using a convex factorisation technique. The definition of an
extreme vector is one which cannot be modelled by a positive linear combination of
the existing extreme vectors, that is, the same as the definition of an endmember.
Thus, the algorithm starts with a single endmember and creates new endmembers
fulfilling the above criteria until it reaches a set limit. In contrast to PPI, this runs
completely without intervention and performs automatic spectral unmixing, producing
an output of abundance images for each endmember. It is also very fast when
compared to PPI. As one of the more recent endmember extraction algorithms, the
examples of use in the literature are sparse, but Lu and Weng (2006) used it in their
analysis of the relationship between thermal features and landcover types in urban
areas, and Knight et al. (2006) used it for producing landcover products from MODIS

data.

3.4 Local Indicators of Spatial Autocorrelation

Spatial autocorrelation refers to the situation when the value of a variable at a certain
location is related to values of the same variable at nearby locations, and local
measures of spatial autocorrelation allow differences in autocorrelation across space
to be observed. Many measures of spatial autocorrelation were originally designed to
work with point data in GIS systems, but they can be applied to remotely sensed data
with the locational information being provided by the pixels and the attribute data by
the DNs. Various measures of spatial autocorrelation have been used with remote
sensing data (see overview in Wulder & Boots, 1998), including the Getis-Ord statistic
(Getis & Ord, 1992; Ord & Getis, 1995). The application of this statistic to remote
sensing data was first shown by Getis (1994). Wulder and Boots (1998) confirmed its
utility for this purpose and since then it has been used in various studies to measure
the uniformity of surfaces, from identifying coral reef stress (LeDrew et al., 2004) to

assessing the quality of vicarious calibration sites (Bannari et al., 2005).

In this study, Bannari et al. (2005) examined the spatial uniformity of the Lunar Lake

Playa, Nevada, using both Getis-Ord statistics and the coefficient of variation. They
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found that the Getis-Ord statistic was more sensitive to changes in spatial uniformity,
and suggested that it should be used for looking at spatial uniformity, while the

coefficient of variation was more suited to looking at temporal uniformity.
The formula for the Getis-Ord statistic, G/, is shown below (Ord & Getis, 1995):

W, (n = W1
(=D

G (d) =

Each element of the binary matrix of spatial weights w;;(d) has a weight equal to unity
for all the pixels found within distance d of pixel i, and a weight equal to zero for all the

pixels found further away than d.

2.jw;;j(d)x; is the sum of the Digital Numbers within distance d of pixel i (i included).
W;" is the number of pixels within the distance d (i included), n is the total number of
pixels, x is the DN at row i, column J, X is the global mean of x and s is the variance of
x (Ord & Getis, 1995). It can be seen that the calculation involves moving this binary
matrix across the image, thereby calculating a G;" value for the neighbourhood around

each pixel.

Two versions of the Getis-Ord statistic exist: G; does not include the pixel at the centre
of the moving window, whereas G; does. It is generally agreed that G;" is more

appropriate for use in remote sensing (Wulder & Boots, 1998).

An important decision when using Getis-Ord statistics is what value to use for d, which
defines the size of the moving window. Bannari et al. (2005) used a 5x5 pixel window
(d = 2), and Wulder and Boots (1998) used a range of windows from 3x3 to 9x9 pixels.
LeDrew et al. (2004) used multiple window sizes, recorded the window size for which
the maximum Getis-Ord value was found (the ‘Maximum Getis Distance’) and used this
to classify coral reef stress. When choosing a window size it is important to ensure that
a minimum of 8 pixels are used, as this ensures that the resulting Getis-Ord values are

normally distributed (Griffith et al., 1996).
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4 Method

4.1 Study Images

A selection of images were used for developing and testing the methodology (locations
shown in Figure 2). Two IKONOS scenes (Chandlers Ford and Thorne Moor) were used
during the development process, and then the method was tested on two more
IKONOS scenes (Risley and Kirkbride) and a SPOT scene (Chilbolton; from the NCAVEO
field experiment: Milton & NCAVEO Partnership, 2008) to test the applicability of the
method to images of differing resolutions. The final part of the methodology was to
perform an empirical line method calibration using the automatically selected
calibration sites, and examine the results. The SPOT scene was the only image which
had corresponding ground data (which would allow this calibration to be carried out)
but had a different pixel size to the images the method was developed on, which may
affect the results. Therefore a simulated IKONOS image was created from
atmospherically corrected Eagle data of Chilbolton (Milton & NCAVEO Partnership,
2008) using the HS2MS routine included with ATCOR-4 (Richter, 2010) to simulate top-

of-atmosphere reflectances for the IKONOS sensor.

4

Figure 2 - Locations of the images used in this study
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The site selection process requires a digital surface model of the area covered in the
satellite image. These were provided by the NeXTMAP project (NEODC, 2009) which
produced Interferometric Synthetic Aperture Radar derived Digital Surface Models
(DSMs) and Digital Terrain Models (DTMs) of the whole of the UK at a 5m horizontal
resolution and a nominal vertical resolution of 30cm (Intermap, 2004). A DSM was
used as this includes the elevations of buildings and other such features which could

be used for calibration sites.

When the images were combined with the digital surface models, they were
resampled to ensure they were both at the same resolution. The final resolution was
always chosen as the lower resolution of the two input files, to avoid interpolating new
data. The final pixel sizes were 5m for the IKONOS images and 10m for the SPOT
image. Some of the images had areas of cloud in them or areas where the sensor had

been saturated, and these were manually masked out before using them.

4.2 Method Overview

The method for automatically selecting calibration sites is split into two stages: firstly
the image is processed and thresholds are calculated; and then the image is
segmented and classified. The first part is performed in ENVI/IDL (ITTVIS, 2009), and
the second in eCognition (Definiens Imaging, 2004b). This partition between the pieces
of software allows the first stage to be easily automated using the programmable

environment provided with ENVI/IDL; such automation is not possible with eCognition.

Once the calibration sites have been selected, their quality will be assessed using three

methods:

1. Comparison of the calibration sites with the list of desirable criteria for calibration
sites (Table 2, p20).

2. Assessment by an independent expert

3. Performing an empirical line method calibration using the selected calibration sites

and recording the resultant accuracies.

All IDL code written to perform these processes is shown in Appendix D.
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Figure 3 - Overview of the method showing input and output data

4.3 Statistical calculation and thresholding

4.3.1 Assessing spatial uniformity: Getis statistics

Although a function to calculate the Getis statistic across an image is available in ENVI,
it appears to calculate G; rather than G;, and uses a fixed window size of 3 x 3 pixels.
The window size was thought to be an important parameter which needed
investigation, so a routine to calculate the Getis statistic with a configurable window
size was written. It was noted that all previous uses of Getis statistics in remote
sensing have used a queen’s case pixel neighbourhood, so this was hard-coded into the

routine.

An example of the output of the Getis routine for one band of a small image subset is

shown in Figure 4.
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Figure 4 - Example Getis image (subset of Chilbolton image). Black pixels represent uniform areas (either dark or
bright).

When checking the output from the Getis calculation routine a peculiarity in the Getis
values was noticed. It appears that an area which is very bright and relatively uniform
can actually produce a higher Getis value than an area which is less bright, but more
uniform. That is, the brightness of an area appears to be affecting the magnitude of
the value, whereas Ord and Getis (1995) state that it purely decides the sign. This is
investigated more in Appendix B but suggests that image segments should not be
ordered by Getis statistic to find the most uniform area, as that technique may return
the brightest area instead. This is the reason that thresholding the results from the

Getis statistic was investigated.

The Getis statistic routine was written to accept a mask band as an input, allowing
areas of the image (such as clouds) to be excluded from the calculation. The moving
window was set to be 3x3 pixels (d = 2) as this most closely matches the minimum size

of calibration site allowed by the eCognition classification (4x4 pixels).
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4.3.2 Assessing spectral purity: Endmember extraction

The Pixel Purity Index was investigated for analysing the spectral purity of pixels in the
image, but it was found to be very slow as it needed to run for large numbers of
iterations to get any useful result. The SMACC routine was far quicker to run, and

automatically performed unmixing, producing abundance images.

The SMACC routine takes a parameter giving the number of endmembers to find. Small
(2004; 2005) shows that a global sample of Landsat ETM+ scenes can be accurately
represented as combinations of three endmembers (High Albedo, Dark and
Vegetation), and Rashed et al. (2003) shows that urban scenes (which are important as
large proportions of remotely sensed imagery of the UK will include some urban areas)
tend to consist of around four endmembers (Vegetation, Impervious surfaces, Soil and
Water/Shade). Also, the number of true endmembers which can be found for an image
is equal to the number of bands (four for an IKONOS image). Therefore it was decided
to configure the routine to find four endmembers. The routine also requires the
selection of a constraint to apply to the selected endmembers with the options of:
positivity only; sum to less than unity and positivity; and sum to unity. An ENVI tutorial
(ITTVIS, 2008) suggests that the sum to unity constraint allows the selection of a dark
endmember (which is essential for the selection of good dark calibration sites), but
that it should not be used on uncalibrated data. However Wu (2004) suggests that a
lack of atmospheric correction has little or no effect on linear spectral unmixing, and
preliminary tests appeared to confirm that use of the sum to unity constraint on

uncalibrated data produced did not cause problems.

4.3.3 Thresholding
It was decided to apply thresholds to the Getis images and endmember abundances
images in ENVI/IDL to avoid having to alter the eCognition class membership functions

(described later) when adapting the process for different images.

Originally thresholds were applied to the Getis images and the endmember abundance
images using the ENVI Band threshold to ROI (Region of Interest) function. However,

this only allows absolute thresholds, so a function was written to take a top or bottom
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percentile of an image and convert it to a ROI. This allows extraction of the highest and
lowest Getis values for the image, which correspond to bright uniform areas and dark
uniform areas respectively. When applied to the endmember abundance images it
selects the purest pixels in the image, giving a result very similar to that obtained by

the PPI, but in a far shorter time.

The thresholds were applied to the images and the results exported as binary masks
with values of 1 corresponding to a pixel that was above the threshold, and 0 for all
other pixels. Three of these were created: for high Getis values, low Getis values and
high endmember abundance values. An iterative process was used to find the most
appropriate percentile to use, and it was found that taking the top or bottom 0.3%
produced an appropriate number of uniform and pure pixels to go into the

classification process.

The advantage of using percentage thresholds is that this allows the routine to
automatically adjust itself to each individual image. Using this method, the 0.3% most
uniform pixels are selected regardless of the image, whereas absolute thresholds

would require adaptation to work with each different image.

4.3.4 Assessing flatness: Topographic Modelling
The Topographic Modelling functions included in ENVI were used to create slope and
aspect images from the Digital Surface Model to allow assessment of the flatness of

calibration sites.

4.3.5 Automation and User Interface
IDL routines were written to automate the processing and thresholding steps
described above and to layerstack the resulting images into one 10-band image. An

overview of the process is shown in Figure 5.

A user interface was provided to allow the user to set the percentages used for the
thresholding as well as the size of the moving window used by the Getis calculation
routine. This was designed to allow the user to have control over how many calibration

sites were returned. For example, if the image had very few uniform areas in it then
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the user can increase the percentages used for the thresholds to allow more areas to
be selected. This possibility is provided in case it needs to be used, but it is expected
that the use of percentile thresholds (see above) will allow it to work on any image

without adjustment.

[KONDS Image
(4 bands) DEM
F_] F_‘J
Start
Y Y
Extract Endmembers Calculate Getis
LA Y Y
Threshaold Endmembers Threshold Getis Calculate Slope and Aspect
{1 band) (2 bands) (2 bands)
LA Y Y
Layerstack

]

Output Image
{10 bands)

Figure 5 - Overview of the processing and thresholding steps carried out in ENVI/IDL

4.4 Segmentation and classification

4.4.1 Segmentation

The image was segmented using eCognition with the parameters shown in Table 3.
Two levels of segmentation were performed: Level 1 using a scale parameter of 10 to
produce the segments used in the classification, and Level 2 segmentation using a
scale parameter of 0.1 to create a segmentation where each segment contained just
one pixel of the image (see Figure 6). The Level 2 classification was then used in the
fuzzy classification to assess the proportion of the pixels in each Level 1 segment which

had been thresholded by the endmember and Getis thresholding routines.
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of each of the larger segments which contained pixels that had been thresholded in

the previous process.

The choice of eCognition segmentation parameters has been described as a “black art”
(David Holland, Ordnance Survey, personal communication, 2008), particularly with
regard to selection of the scale parameter (Hay et al., 2003), and there have been few
studies regarding the best parameterisation. Darwish et al. (2003) found that higher
scale parameters (that is, larger segments) produced better classification results and
that parameterising the segmentation to focus on the spectral values of image objects
rather than their shapes appeared to produce the best results. This is one reason why
a multi-level segmentation approach was used in this project, as it allows the benefits
of the higher scale parameter while also allowing more complex customised features

to be defined (see below).

Table 3 - Parameters used for segmentation in eCognition

Parameter Value
Scale Factor See text
Shape Factor | 0.3
Compactness | 0.5
Smoothness 0.5
Included IKONOS Band 1
bands IKONOS Band 2
IKONOS Band 3
IKONOS Band 4
DEM
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Figure 6 - Subset of the Chandlers Ford image showing segmentation at Level 2 (top) and Level 1 (bottom)
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4.4.2 Fuzzy classification

eCognition provides various statistics, known as features, which can be calculated for

each image object, and it also provides the facility to add customised features to this

list. Various customised features were created to be used in rules in the fuzzy

classification, and they are described in Table 4.

Table 4 - List of customised features implemented in eCognition, including explanations and calculations used to

create them

Feature Name

Description

Calculation

CV (Aspect) Coefficient of variation of the aspect | Standard Deviation (Aspect)
image Mean (Aspect)

CV (Slope) Coefficient of variation of the slope Standard Deviation (Slope)

(Unused) image Mean (Slope)

Sum of Dark Sum of the pixel values in the Level 1

Getis segmentation of the Dark Getis

image. As the values in the Dark Getis
image are either 1 or 0, this gives the
count of the number of pixels which
were higher than the threshold.

Z Level 2 Dark Getis values

Sum of Bright
Getis

Sum of the pixel values in the Level 1
segmentation of the Bright Getis
image. As above.

z Level 2 Bright Getis values

Sum of
Endmember
Likeness

Sum of the pixel values in the Level 1
segmentation of the endmember
abundance image. As above.

Z Level 2 Endmember values

Fraction like Dark
Getis

The fraction of pixels in the image
object which were selected by the
Dark Getis thresholding routine.

Sum of Dark Getis
Number of pixels in object

Frgction Iil_<e Th(.a fractic_)n of pixels in the image Sum of Bright Getis

Bright Getis object which were selected by the - - -
Bright Getis thresholding routine. Number of pixels in object

Fraction like The fraction of pixels in the image

endmember object which were selected by the Sum of Endmember Likeness
endmember abundances Number of pixels in object
thresholding routine.

NDVI The average Normalised Differgnce Mean(NIR) — Mean(Red)

(Unused) Vegetation Index (NDVI) of the image

object

Mean(NIR) + Mean(Red)

A class hierarchy was developed (see Figure 7), using inheritance to reduce the

complexity of specifying the rules for each class. In this way, the rules needed to select
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the calibration sites were built up gradually. The rules which were implemented are

compared to the desirable characteristics of a calibration site (from Table 2, p20) in

Table 5.

Table 5 - Comparison of rules implemented in eCognition and the desirable characteristics of a calibration site.

Desirable Characteristic

Implemention

Large

Good Sized rule (thresholds from Table 2, p20)

Range of reflectances (preferably
including very bright and very dark
targets)

Inherent in both the selection of high and low Getis
values (Dark Getis and Bright Getis rules) and the
use of endmember values (Like Endmember rule) to
ensure the extremities of the pixel cloud are found

Stable over time

Originally assessed by including a rule excluding
vegetation (any image object with NDVI > 0.05,
from Zhou et al., 2009) but it was found that
applying this rule would result in no targets with
high NIR values being selected. No other method
for assessing stability over time was found, as a
time-series of data was not available, so this
criterion is no longer assessed.

Spatially homogenous

Dark Uniform and Bright Uniform rules

Flat

Relatively Flat rule

Two or more targets

Controlled by the percentile thresholds set during
the thresholding process
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Relatively Flat

Elevation Range = 6m
CV (Aspect) = 7

Good sized

l

Like Endmember

Width == 4px
Length == 4px
Area == 16px

Fraction Like Endmember0.5-=1.0

O\

Dark Uniform Bright Uniform

Fraction Dark Getis 0.5-=1.0 Fraction Bright Getis 0.5-=1.0

Figure 7 - eCognition class hierarchy. Values specified with X -> Y represent a continuous membership function

from X to Y (see text). Classes inherit all rules from the classes above them.

The fuzzy classification options in eCognition were not used for the Relatively Flat and
Good Sized rules as completely fulfilling these rules was thought to be essential. The
values for the Relatively Flat rule were derived through an iterative process. The
threshold for the elevation range was chosen to make sure that buildings with
superstructure on them (such as lift machine rooms) were still able to selected. From
examination of the Digital Surface Models used in this project it seems that very few
buildings have completely flat roofs (because of issues with drainage) and it was found
that setting the threshold for elevation range any lower than 6m excluded nearly all

buildings.
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Figure 8 - Example of a sawtooth roof on an industrial building in Eastleigh (within the Chandlers Ford IKONOS

image). Photographer: Colin Smith, from www.geograph.org.uk

The inclusion of the coefficient of variation of aspect in this rule is to try to exclude
sawtooth roofs (see example in Figure 8). These are not desirable for use as calibration
targets, as their reflectance varies considerably with changes in insolation angle
because of shadows developing between the different sloping components. Various
methods for excluding these roofs were examined. Stilla and Jurkiewicz (1999) propose
an advanced method which uses histogram analysis of the elevation values of roof.
This method can distinguish between many different types of roof, but is unable to be
implemented within eCognition as customised features can only be specified using

simple algebraic formulae.

It was hypothesized that the variation in slope and aspect would be higher for a
sawtooth roof than a flat roof, and this was confirmed by examining slope and aspect
images. An iterative process was used to decide an actual value for these thresholds.
After further testing, however, the threshold for the slope image was excluded as it
was found to exclude water bodies (because it detected the change in slope at the
bank of the water body), and checking the coefficient of variation of aspect alone
appeared to exclude sawtooth roofs. It was assumed that this technique would not
work when the sawtooths themselves were smaller than the resolution of the satellite
image. However, testing showed that this technique worked even on the image of

Chalcroft Distribution Park shown in the Chandlers Ford image (Figure 9), where each
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individual slope component of the sawtooth roof is approximately 3.5m wide

(measurements from Google Earth (Google Earth, 2009)) and the satellite image is at a

resolution of 5m.

Figure 9 - Aerial photograph of a building in the Chalcroft Distribution Park (Chandlers Ford image). The sawtooth

nature of the roof can clearly be seen. (Google Earth, 2009)

Fuzzy membership functions were used for the remaining rules. This involved
specifying a range of values which are allowed and letting eCognition assign a
membership value for each image object based on the actual value (see Figure 10). A
membership value was assigned to the image object for each class that an image
object is a member of, and this can be used to see why classes are selected as
calibration sites or not. It also allows the final list of calibration sites to be sorted by
their membership value, allowing the user to see which image objects fit the criteria

most exactly.
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Figure 10 - Membership function graph used for the three fuzzy rules (Like Endmember, Bright Uniform and Dark
Uniform). It can be seen that a membership value of 0.5 will be given to an image object which has 75% of its

pixels selected as being like endmembers.

As the fuzzy membership functions for Bright Uniform and Dark Uniform require at
least 50% of the pixels in the image object to have been selected as uniform, this will
exclude any areas which were masked out of the Getis image, because masked areas
were set to zero (representing non-uniform areas) by the Getis statistic calculation

routine.

4.4.3 Automation and export

There are limited facilities for automating eCognition in the form of protocols which
can be ‘recorded’ and then run. A protocol was made to perform the required
segmentations, load the class hierarchy and then perform the classification, so the user
of this routine needs only very slight knowledge of eCognition. Once the classification
has been performed the selected calibration sites can be exported to a shapefile which

can then be imported into ENVI.

4.5 Comparison with desirable criteria

The best method of assessing the quality of the selected calibration sites is to check
whether all of the sites fulfil the desirable criteria for calibration sites listed in Table 2
(p20). Each of these criteria are considered below, the method of checking whether
they apply to the selected calibration sites is outlined and the results are shown in a

summary table in the results section.
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4.5.1 Sites must be large
This was checked by examining the size of each selected site and ensuring it was

greater than 4 x 4 pixels.

4.5.2 Sites must have a range of reflectances

This range of reflectances should include very bright and very dark sites to ensure that
both ends of the empirical line method regression line are accurately placed. Figure 11
shows histograms of the pixels selected as calibration sites and all pixels in band 3 of
the Chilbolton image. It can be seen that the calibration site pixels are generally either
very dark or very bright, and in fact consist of some of the brightest and darkest pixels

in the scene.

The percentage of calibration site pixels which were in either the top or bottom 10% of
the image data was calculated as a quantitative measure of this. As long as there are
some calibration site pixels in the top or bottom 10% of the data then the calibration
sites are useable, but this statistic provides a useful method of comparing the quality

of the sites selected from the different images.

4.5.3 Sites must be stable over time

This was not assessed by the site selection routine, so is not checked in this section.

4.5.4 Sites must be spatially homogenous

Figure 12 shows a subset of the Chilbolton image with bright and dark uniform areas
(as selected by the Getis thresholding routine) shown in yellow and green respectively.
This appears to show that areas that are expected to be uniform (such as building
roofs and lakes) are being selected. However, as the Getis statistic is a relatively new
technique, a different technique has been used to validate the results. Coefficient of
variation (CV) was calculated across each image using a moving 3x3 pixel window, and
the results for each of the calibration sites were examined. Bannari et al. (2005)
suggested a CV of 3% as a threshold for uniformity when dealing with ground
calibration targets used for sensor calibration. These sites are necessarily more

uniform than sites which are likely to be selected for use as atmospheric calibration
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sites for routine use and therefore a higher threshold was chosen. It was thought that

9%, a threshold three times Bannari’s threshold, was suitable.

4.5.5 Sites must be flat

An important aspect of flatness is the variation of height over an area: the topographic
roughness. The surface area ratio (defined as the ratio of 3D surface area to
planimetric surface area) can be used as a measure of this (Jenness, 2004). A ratio of 1
shows that an area is completely flat, as the 3D and planimetric surface areas are
equal. Completely flat calibration sites will not be expected, but it is difficult to decide
where to place the threshold of acceptability. A value of 1.03, that is a 3D surface area
3% greater than the planimetric area, was chosen as the threshold, as this seemed like
a suitable value. This also links with Bannari et al.’s (2005) coefficient of variation

threshold (see above).

4.5.6 There must be two or more targets
The number of bright and dark targets selected for each image were counted, and at

least one site of each type was required for the sites to be acceptable.

4.5.7 Sites must be spread through the image
The spread of sites throughout each image was assessed by eye and recorded in

categories of good, moderate and poor.

4.6 Independent assessment
Images showing the selected calibration sites were given to an independent expert (Dr
Angela Harris, University of Southampton) for assessment. She provided comments

and a score out of ten for each image.
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Figure 11 — Histogram of the pixels selected as calibration sites in band 3 of the Chilbolton image (red line) and histogram of all of the pixels in the image (black line) showing that

the pixels selected as calibration sites are some of the brightest and darkest pixels in the scene.
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Figure 12 - A subset of the Chilbolton image showing dark uniform areas in green and bright uniform areas in

yellow, according to the Getis statistic thresholding

4.7 Calibration Test

A routine was written to import each individual polygon in a shapefile to a separate
ROl in ENVI. This allowed the calibration site locations to be imported to ROls, from
which mean spectra can be extracted. Field data could then be collected and the

Empirical Line Method performed using the built-in ENVI function.

The routine was tested with the SPOT image and the simulated IKONOS image. There
was no actual ground data available for use in the Empirical Line Method calculation,
so CASI airborne data was geometrically corrected using the AZGCORR utility,
calibrated to reflectance using ATCOR-4 (Richter, 2010) and then used as surrogate
ground data. The geometrically-corrected CASI data was found to be incorrectly co-
registered to the SPOT data, so an image-to-image warp with 10 ground control points

spread across the image was used to improve the co-registration to within one pixel.
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Five pixels from each of three surface types (Vegetation, Impervious Surface and
Water) were pseudo-randomly selected from the corrected SPOT image, and their
spectra compared with those from the same locations on the CASI image. A

percentage error was then calculated for each band of the spectra at each site using

the formula below.

|Corrected SPOT Value — CASI Value|
Corrected CASI Value

Percentage Error =
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5 Results

5.1 Simulated IKONOS analysis
As mentioned above, a simulated IKONOS image was created from Eagle data to be

used as one of the test images. However, when the site selection routine was run on
this image with the default parameters it did not find any suitable sites. This was
investigated, and it was found that the Getis routine was not selecting many uniform
sites. It was thought that this is because of the resampling used when converting from
the Eagle data (at 1m resolution) to create IKONOS data at 5m resolution. It was
therefore decided not to use this image, as it did not appear to have the same

uniformity properties as a real IKONOS image.

5.2 Calibration Site Locations

The method was applied to all of the study images described earlier with the default
parameters (0.3% for all thresholds). The calibration sites found are shown in the
figures below. Red areas represent bright targets and yellow areas represent dark

targets, except for the SPOT image where bright targets are shown in green.
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Figure 13 - Calibration sites selected within the Chandlers Ford image



Figure 14- Calibration sites selected within the Kirkbride image



Figure 15 - Calibration sites selected within the Risley image




Figure 16 - Calibration sites selected within the Thorne Moor image (rotated 90° anticlockwise)



Figure 17 - Calibration sites selected within the Chilbolton image
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5.3 Comparison with desirable criteria

Table 7 shows the results of the comparison of the calibration sites selected in each

image with the desirable criteria for calibration sites.

5.4 Independent Assessment

Dr Angela Harris’ assessments are shown in Table 6.

Table 6 - Qualitative assessment of calibration site selection by Dr Angela Harris

Image

Assessment Comments

Score
(out of
10)

Chandlers Ford
(IKONOS)

Bright buildings appear to be stable —ie. good
targets

Not sure why some parts of a field have been
identified and not others. What is the cutoff?
Not sure how well fields will work — should be ok
if it’s short grass

Only one dark target of sufficient size; others
appear to be shadows, thus temporal stability is
a problem

Kirkbride (IKONOS)

Stability of sand in an estuary environment will
be low (wetting and drying) over time, but may
be ok for a one-off calibration

Not many dark sites

Edges of building identified instead of centre
which “appears” to be more homogenous
Medium brightness range appears to be well
covered

Risley (IKONOS)

Few targets clustered in the same area of the
image
Dark targets identified well — eg. water

Thorne Moore
(IKONOS)

Some bright areas in a car-park/industrial unit
identified, although some quite small

Again includes edges of objects, eg. roofs etc.,
which could suffer from influences beyond that
pixel (eg. neighbouring pixels from the Point
Spread Function)

Ideally more areas to the north of the image
would be useful
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Chilbolton (SPOT) .

Areas of water clearly identified and of sufficient
size

Not sure how well the fields will work — depends
on vegetation type etc.

Targets well spread throughout the image

5.5 Calibration Test

An Empirical Line Method calibration of the SPOT image of Chilbolton was performed

using the selected calibration sites. Unfortunately the surrogate ground data did not

cover the whole image (see Figure 18), and only five calibration targets were present in

both images (see Figure 20 and Table 8).
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Table 7 - Comparison of the desirable criteria for calibration sites with the calibration sites selected in each image using the methods specified in section 4.5 (p41).
Image Large Range of Spatially Flat Two or more Spread
Bright/Dark Homogenous sites throughout
Pass Fail image
Chandlers Ford All > 4x4 pixels B1: 38% B1: 3.6% Surface Area Number of Moderate
B2:39% B2:4.8% Ratio: 1.021 Bright: 18
B3:39% B3:5.7%
B4: 90% B4:9.4% Number of
Avg: 5.8% Dark: 9
Risley All > 4x4 pixels B1l: 66% B1:3.6% Surface Area Number of Poor
B2: 75% B2:4.9% Ratio: 1.016 Bright: 8
B3: 66% B3:6.8%
B4: 99% B4: 10.1% Number of
Avg: 6.4% Dark: 8
Kirkbride All > 4x4 pixels B1: 60% B1:3.1% Surface Area Number of Moderate
B2: 60% B2:4.1% Ratio: 1.007 Bright: 22
B3: 60% B3:5.2%
B4:39% B4:5.1% Number of
Avg: 4.4% Dark: 0
Thorne Moor All > 4x4 pixels B1:21% B1:7.4% Surface Area Number of Poor
B2: 67% B2: 10% Ratio: 1.013 Bright: 23
B3: 62% B3:13.1%
B4: 94% B4: 13.4% Number of
Avg: 10.9% Dark: 1
Chilbolton All > 4x4 pixels B1: 6% B1:6.4% Surface Area Number of Good
B2: 7% B2:8.5% Ratio: 1.026 Bright: 8
B3: 98% B3:16.3%
Avg: 10.4% Number of
Dark: 11
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Figure 18 - CASI image overlain on the SPOT image showing the relatively small area where data is available from

both images

Table 8 - Information on the calibration targets used in the quantitative assessment

Target Name | Type Target Description

Building Roof | Bright | Bright white roof of a building in an industrial park on the
1 outskirts of Andover

Lake 1 Dark Small lake in woodland north of Andover

Lake 2 (North) | Dark Lake just south of Andover

Lake 2 (South) | Dark | Lake just south of Andover

Lake 3 Dark Lake further south of Andover
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Figure 19 - Average spectra from the calibration sites selected for the calibration, showing the similarity of the

three lake spectra.

Table 9 - Average percentage differences between the corrected SPOT and CASI images for a selection of pixels of

different surface types

Vegetation | Impervious | Water | Mean
Green 14.50 35.50 27.39 25.80
Red 20.38 36.85 57.38 38.20
NIR 11.73 49.43 82.16 47.77
Mean 15.54 40.59 55.64 37.26
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Figure 20 - Subset of SPOT image showing the calibration sites used in the calibration. Inset shows location of

image in SPOT scene.

The percentage error of the corrected SPOT image compared with the atmospherically

corrected CASI image are shown in Table 9 and Figure 21.
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Table 10 - Percentage differences between the corrected SPOT and CASI images for each individual pixel of each

surface type

Vegetation

Green Red NIR
Site 1 0.98 38.08 0.04
Site 2 5.95 19.94 2.17
Site 3 6.62 27.91 14.16
Site 4 22.27 9.51 9.23
Site 5 36.69 6.45 33.06

Impervious Surface

Green Red NIR
Site 1 5.08 4.50 6.33
Site 2 4.52 8.69 21.87
Site 3 23.37 29.04 90.04
Site 4 38.87 35.84 25.29
Site 5 105.65 106.20 103.61

Water

Green Red NIR
Site 1 24.47 87.47 102.57
Site 2 33.64 48.38 87.32
Site 3 6.67 29.66 55.80
Site 4 0.68 65.22 77.93
Site 5 71.49 56.19 33.06

407

Percentage Difference

T
550

T
600

T
650

T
700
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800

Figure 21 - Graph showing the percentage differences calculated between the corrected SPOT and CASI images,

with the three SPOT bands marked
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6 Discussion

6.1 Comparison with desirable criteria
Overall, most criteria were met by the selected calibration sites. One image (Chandlers
Ford) met all of the criteria, and only one image failed to meet more than one of the

criteria. All images pass the criteria of each calibration site being larger than 4x4 pixels.

No dark calibration sites were selected for the Kirkbride image, which would mean that
an empirical line method calibration could not be run. All of the problems with other
images are more minor, and, although they may affect the quality of the resultant

calibration, would not stop a calibration from being carried out.

The thresholds of acceptability for the criteria tests are mostly arbitrary, but the
variations in the actual values can give useful insights into the calibration site selection
process. For example, the Kirkbride image had the flattest calibration sites, but this is
likely to be because of the extensive areas of estuary in the image, all of which are
marked on the DEM as having an elevation of Om. This shows the problems with
relying on DEM data which may not reflect the true topography at the moment of

satellite image acquisition.

The large range of coefficient of variation values between the images shows the ability
of the routine to select the most uniform areas of an image, even when there are

major differences between images in terms of the availability of uniform areas.

It is noticeable that there are always fewer dark calibration sites selected than bright
calibration sites. The reason for this is likely to be that there are only a few surfaces
which are suitable as dark calibration sites. The dark sites which have been selected
seem to be water, dense dark vegetation or shadows. It is normally far easier to find
sites which are bright in at least one band (such as vegetation which is bright in the NIR

band) or bright in most bands (such as a bright white building roof).

The differences between the bands for both spatial uniformity and brightness range
show that the NIR normally behaves differently to the visible bands. In most cases the

NIR band (Band 4 for the IKONOS images, Band 3 for the SPOT image) has a higher
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coefficient of variation. This is likely to be because many of the sites selected for the
NIR band will be vegetation, and vegetation is normally less spatially uniform than, for

example, a bright building roof.

Also, the NIR band tends to have a higher proportion of the selected pixels in the top
or bottom 10% of the image data (up to 98% for the Chilbolton image). This is because
the calibration sites for NIR values are normally either water (which has very low NIR
values) or vegetation (which has very high NIR values), and very rarely something with

values in between.

Achieving a good spread of calibration sites throughout the image is difficult, as land-
uses which have large uniform areas (such as lakes or building roofs) are normally only
present across part of the image. The Chilbolton image has the best spread of sites,
whereas the Risley and Thorne Moor sites perform badly, with sites being
concentrated in the east and south respectively. In the Thorne Moor image this is
because the northern half of the image is occupied by a large peat bog, which has a

very rough surface (both spectrally and topographically).

6.2 Independent Assessment

Overall, the scores given by Dr Harris suggest that the routine picks calibration sites
which are fit for purpose. A good number of sites seem to have been selected for most
images and many of them are sites which are likely to be relatively temporally stable
(such as building roofs (Bretz & Akbari, 1997) or asphalt). However, there are

problems, which are detailed below.

One of the most of obvious problems that Dr Harris noticed was the lack of dark
calibration sites in the Kirkbride image, and the limited number of dark calibration sites
found in some of the other images. It has already been noted that there are a limited
number of surface types which are suitable for use as dark calibration sites, but the
site selection procedure should be designed to ensure that dark sites are selected even

in the most difficult images.
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6.2.1 Temporal stability of sites

A distinction should be made here between the calibration sites selected for a one-off
calibration, or for use with multiple calibrations. For a one-off calibration where
ground data was collected contemporaneously with satellite overpass, the temporal
stability of a site is not important. This means that sites such as the estuarine sand
sites selected in the Kirkbride image and the vegetation sites selected in all images are
likely to be good sites for calibration. However, if the sites are to be used for multiple
calibrations then temporal stability is important, and many of these sites would not be
suitable. However, it is impossible for the routine to take this into account as a time

series of data would be needed to assess the temporal stability of sites.

6.2.2 Spread of sites across the image

Dr Harris commented that the spread of the sites across the image was poor in some
images, particularly the Thorne Moor image. However, there is no method in
eCognition to ensure that the sites selected are spread across the image so it is
impossible to implement a rule to ensure this. It is therefore necessary to check the
spread of sites across the image manually after running the site selection method, and,
if necessary, change the percentage thresholds to enable more sites to be selected.
Some parts of the image naturally have less uniform areas (for example peat bogs) and

therefore calibration sites are less likely to be located in these areas.

6.2.3 Adjacency effect problem

Dr Harris commented that the edges of some buildings were selected rather than the
centre and that this may cause problems with the influences from neighbouring pixels
(because of the Point Spread Function of the sensor; Manslow & Nixon, 2002). It is
possible that the edges of the building were selected purely because they happened to
be more uniform than the centre of the building. However, there could be a problem
with contaminated pixels for these calibration sites. A possible solution to this problem

is discussed in section 6.4.2 (p73).
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6.2.4 Exclusion of sawtooth roofs

When developing this method it was noted that many bright building roofs are suitable
for use as calibration sites, except for sawtooth roofs as these suffer from large
changes in spectral reflectance due to changes in insolation angle. A particular effort
was made to ensure that sawtooth roofs were not selected, and this was partially
successful. Figure 22 shows a subset of the Chandlers Ford image and an aerial
photograph of the same area from Google Earth. It can be seen that the only building
selected for use as a calibration target is the flat roofed building; all of the sawtooth

roofs are excluded.

Figure 22 - Images of Chalcroft Distribution Park from the Chandlers Ford image (left) and Google Earth (right,

from Google Earth, 2009) showing the selection only of non-sawtooth roofs

However, the image of a building in the Risley image (Figure 23) shows that some
sawtooth roofed buildings are segmented so that each individual piece of roof is an
individual image object: this is a problem of oversegmentation (see examples and
explanations in Schiewe, 2002). This stops the technique employed to exclude
sawtooth roofs from working, as it is looking at aspect variation within each image

object, and in this case the aspect is constant for each image object.
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Figure 23 - Subset of Risley image showing oversegmentation of a building roof, with each sawtooth segment

represented in a separate image object

6.2.5 Overall assessment

The site selection routine seems to select sites which are fit for purpose for the
majority of images, and appears to perform best on images that include urban areas
and water (such as the Risley, Chandlers Ford and Chilbolton images). This combination
of landcover types provides the best conditions for the routine to work as it provides

appropriate sites for both bright and dark targets.

6.3 Quantitative Assessment

The average accuracies achieved by the calibration (shown in Table 9, p59) range from
11% to 87% depending on the band and the validation site used. For comparison,
accuracies reported in the literature for a variety of atmospheric correction methods
including the Empirical Line Method are shown in Table 12. It must be noted that the
method used to calculate these percentage error values varies between projects, so

the numbers may not be directly comparable.

The best individual accuracy that was achieved in this project (0.04%) appears to be
better than those achieved by some of the other projects using the Empirical Line

Method, but considerably better than some of the accuracies obtained through the
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use of the Refined Empirical Line Method (REL) and the Dark Object Subtraction
method (DOS). However, the lowest accuracy is far lower than any other accuracy
values reported in the literature. The overall accuracy, averaged over all bands and all
validation sites, is just over 37%, which is far worse than any of the results in the

literature.

In most of the results from the literature (with the notable exception of Xu & Huang,
2006) there is little difference in accuracies between bands. This is likely to be because
calibration sites were chosen which included high and low values for each band. This
was not the case in this project, as data availability meant that many of the calibration
sites selected by the routine could not be used. Sites low in the NIR band were present
(for example, water) but there were no vegetation sites to provide high NIR values.
This can be seen in Figure 24, which shows the pixel cloud of the SPOT image, with the
different calibration sites used marked on it. If the two main visible axes are taken to
represent Brightness and Greenness (as with the Tasseled Cap transformation, for
example Horne, 2003) then it can be seen that the lake site is a good dark site (low
brightness and low greenness), and the building roof site is a good site for high
brightness, but that there is no site for high greenness. The vegetation label shows
where a vegetation calibration site would appear, and using a vegetation calibration

site would then cover the three most important endpoints of the data.
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Figure 24 - 3D graph of the pixel cloud from the SPOT data with points marked showing the calibration sites used.

The red label is the building roof, the blue label is the average spectra from the lakes and the green label shows

where a vegetation calibration site would be placed if one had been available.

The discussion above reflects the low overall quality of the calibration which has been
carried out. However it should be noted that this is not necessarily a outcome of the
calibration site selection method. The quantitative testing of the method was limited
by a number of factors, principally data availability, which are likely to have
considerably affected the resulting accuracies. A summary of problems with the

calibration which could have affected the resulting accuracies is shown in Table 11.
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Table 11 - Problems with the calibration performed in this study, and their causes

image

Problem Cause
Sites not spread Lack of surrogate ground leading to some sites not being
throughout the SPOT able to be used.

Sites do not include a
bright and dark site for
each band

Lack of surrogate ground data leading to some sites not
being able to be used.

Sites possibly including
some neighbouring pixels

Imprecise co-registration of SPOT and CASI images.

Comparison not being
between exactly the same
pixels

Imprecise co-registration of SPOT and CASI images.
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Table 12 - Reported accuracies and other details for a number of applications of atmospheric correction approaches in the literature

Method Sensor Reported accuracies Statistical Number of Reference
Method targets
Empirical Line IKONOS Blue 1.3%
Method Green 1.42% .
Mean Absolute Karpouzli and Malthus
Red 1.58% Difference 9 targets (2003)
NIR 1.3%
Mean 1.4%
Empirical Li CASI With 2t t 1.88%
M”;fr'\r(')cda ne W:th 3 t:z:t: ao | RMSE 2 or3targets | Smith and Milton (1999)
. (s]
Refined Empirical Line | IKONOS Blue 11%
Method Green 13% . 6 bright targets
Mean Relative
Red 3% Error plus RTM-based | Xu and Huang (2006)
NIR 5% dark value
Mean 8%
Refined Empirical Line | Landsat TM Approximately 1% Mean Absolute | Various
M t al. (2001
Method and ETM+ Difference numbers oran etal. (2001)
Dark Object Landsat TM Validation Target 1 | 4.84%
Subtraction Validation Target 2 | 8.42% Not specified Not applicable Chavez (1989)
Mean 6.63%
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6.4 Possible Improvements

Many of the problems with this method are due to the limitations of eCognition. In an
ideal world, purpose-built software would be created which would include extra rules
which cannot be created in eCognition. These new rules could include the method of
Stilla and Jurkiewicz (1999) to identify sawtooth roofs, and measures to ensure a good
spread of calibration sites across the image (as this was one of the worst problems

identified in the comparison of the selected sites with the desirable criteria).

In a purpose-built piece of software an interactive GUI could be created which would
allow the switching on and off of different rules (such as requiring similarity to
endmembers, or flatness), in order to see how this changes the calibration sites which
are selected. At the moment this can be achieved by running a selection of different
eCognition protocols, some of which load class hierarchies that exclude one of the
rules (such as the flatness requirement), but this could be much more streamlined.
Another option would be to count the number calibration sites selected and

automatically adjust the thresholds if very few sites are selected would also be useful.

A limited number of images were available for use in this project. However, in a more
complex project a time-series of IKONOS scenes could be provided, thus allowing the
temporal stability of the selected calibration sites to be quantified. A processing step
could be added using ENVI/IDL to assess how temporally stable the sites are, and then
a new eCognition rule could incorporate assessments of temporal stability into the
final classification. This would allow assessment of a key criterion for calibration sites:

that of temporal stability.

6.4.1 Quantitative Testing Improvements

The quantitative testing performed in this project was of a low quality, mainly because
of problems with the availability of ground data. Testing with a comprehensive dataset
using all of the calibration sites selected by the routine would enable a far better
assessment of how the selection of calibration sites affects the resulting calibration

accuracy.
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The best way to test the routine would be to choose an image with available ground
data, and have calibration sites selected both by the method detailed in this paper and
manually by an expert. Two calibrations will then be performed, one with each of the

sets of calibration sites, and the resulting accuracies compared.

6.4.2 Pixel Neighbourhood Influence Problem
As mentioned above (Section 6.2.3, p65) there could be a problem with the influence
of neighbouring pixels when using the selected calibration site. A sub-project to

investigate this is described in Appendix C.
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7 Conclusions
The objectives set out at the beginning of this project have all been achieved. A set of

criteria has been developed to select calibration sites (Table 2, p20). A method has
been devised to select sites based on these criteria (Section 4, p27), and the quality of
this method has been assessed by comparison with the original criteria (Section 5.3,
p55), by an independent expert (Section 5.4, p55), and by performing an empirical line
method calibration (Section 5.5, p56). The overall aim of the project has been fulfilled

as an automated system has been created.

The calibration sites selected by this automated system seem to fulfil the majority of
the desirable criteria for calibration sites, although it should be remembered that the
acceptability thresholds used in this comparison were relatively arbitrary. The
independent assessment by Dr Harris suggested that there are some areas in which
improvements could be made, but the method selects calibration sites which are fit for
purpose. It seems that some images have very few areas which are suitable for use as
dark calibration sites, and the site selection routine struggles on these images.
Percentile thresholds are used to allow the routine to adapt to different images, and it
seems likely that any automatic site selection routine would struggle with these

images.

The quantitative assessment provided a large range of accuracies for the different
bands and validation sites, making an overall assessment of the accuracy difficult. The
average percentage errors of the calibrated SPOT image compared to the surrogate
ground data suggests a poor quality calibration. However, data availability problems
combined with positional inaccuracy to cause a low quality calibration which was not

an accurate reflection of the calibration sites which were used.

Many possible improvements have been suggested above (Section 1.1, p72) and these
can be investigated, possibly using a purpose-built piece of software instead of

eCognition, as this would allow more complex rules to be defined.
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10 Appendix A: Official Forms

FORM 1
School of Geography
University of Southampton

UNDERGRADUATE RESEARCH PROJECT PROGRAMME FORM

This form is to be completed by 8™ May 2009. Submit it to the Student Office
but keep a copy for yourself, with the school stamp, and include this in Appendix
A. Before you hand-in this form you must discuss risk and ethics issues with your
supervisor and submit a risk assessment and ethics form where necessary.
Please enter details under each heading.

NAME: Robin Wilson STUDENT NUMBER: 421985588
E-MAIL ADDRESS: rtwlv07@soton.ac.uk

PROJECT TITLE: Automated recognition of ground calibration targets suitable
for atmospheric correction of SPOT images of the UK

PROJECT SUPERVISOR: Prof. E. ]. Milton

1. Aim(s) of project
To construct a system to perform automated recognition of ground calibration
targets suitable to be used for atmospheric correction of SPOT images of the UK.

2. Methods to be used in data collection and analysis

Data collection:
+ Data will be provided from the NCAVEO Field Experiment via the NEODC
(http://www.neodc.rl.ac.uk/) and will include data from SPOT, Eagle,
CASI, OS DMC and field spectrometers

Data analysis:
* Various routines within the ENVI remote sensing software will be used
with customised routines for calculating Getis statistics written in IDL
+ eCognition will be used for the final classification of sites, using input data
processed in ENVI first
+ Software such as Microsoft Excel and SPSS will be used where necessary

3. i r fiel ipm field data
software, data availability, etc.) Please include details of cost and access to
these where applicable and ways in which you will meet these requirements. NB
'data’ can mean numerical values, interviews, text, images, etc. and will differ
according to individual project.

Software:

« ENVI + IDL - Available in the GeoComputation laboratory.

+ eCognition - Prof Milton has a personal copy which will be available in the
NCAVEOQ lab.

s SPSS - accessible via http: ftware.soton.ac.uk for use on personal
computers

Data:
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» All data will be provided from the NCAVEO Field Experiment - there will be

no primary data collection

4. imi wor rri a

etc.)

round referenc field visits

The following references have been read as background reading:
* Anderson, K. and Milton, E. 1., 2006, On the temporal stability of ground
calibration targets: implications for the reproducibility of remote sensing

methodologies

» Bannari, A. et al., 2005, Potential of Getis Statistics to Characterise the
Radiometric Uniformity and Stability of Test Sites Used for the Calibration of

Earth Observation Sensors

« Bhowmick, D., 2009, Use of an airbourne imaging spectrometer as a transfer
standard for atmospheric correction of SPOT-HRG data, MSc thesis,

University of Southampton

e Definiens Imaging, 2004, eCognition User Manual

+ Smith, G. M. and Milton, E. J., 1999, The use of the empirical line method to
calibrate remotely sensed data to reflectance

« Wulder, M. and Boots, B., 1998, Local spatial autocorrelation characteristics
of remotely sensed imagery assessed with the Getis statistic

5. Likely problem

Problem

ered an i i

Solution

Losing track of goals

Print out copy of this document to
review when I feel I'm straying from
the goals.

Loss of data due to human error or
hardware failure

Perform a backup onto an external
hard drive at the end of each day’s
work.

Keep all source code in Subversion
version control, hosted at
http://code.google.com, and commit
changes after all major modifications
Perform extra offsite backups after
major project milestones reached
Backup major project documents to
Dropbox

Tasks taking longer than expected

Shift all deadlines forward in time to
allow at least an extra month before
the final deadline, to allow for slippage.

Losing track of what papers have been
read, and misplacing references

Ensure that whenever a paper is read
its details are entered into my EndNote
library in the ‘Dissertation’ folder.
Perform a final check of all references
before submission.

Spelling, punctuation and grammar
errors in the final report

Get it proof-read by at least two other
people not connected with the project
(probably parents).

6. Ti i (Please include a table for completion or gantt type chart
with self-set deadlines to ensure timely completion of the project. Relevant headings
might include: 1) literature review; 2) confirmation of methodology; 3) completion of

Guidebook - 2009/10 1

Page 88 of 114



Robin Wilson

421985588

data collection (if appropriate); 4) completion of data analysis; 5) first draft

completion; 6) manuscript ready for binding.)

Data acquisition

beginning of June 2009

Data pre-processing

beginning of June 2009

Literature Review

end of June 2009

IDL Getis programming

end of June 2009

Feature selection/extraction

early July 2009

eCognition rule creation

end July 2009

ELM atmospheric correction

end of July 2009

Comparison with RTM and DOS mid Aug 2009
Comparison with field spectra mid Aug 2009
Automation of system end of Aug 2009
First draft mid Dec 2009
Second draft early Jan 2010
Third draft mid Jan 2010
Final draft end of Jan 2010

Manuscript ready for binding

early Feb 2010

Risk Assessment form Y / Hi):g-r_ap;élli:'a"ﬁija
Ethics Assessment form Y, / Not applicable
Signature of Supervisor !‘\1 Date 28‘£ LPE e 9

Signature of Student ﬂU\/\

Date _2% fotx- { 09

Guidebook - 2009/10
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FORM 2

UNDERGRADUATE RESEARCH PROJECT PROGRESS REPORT FORM

This form is to be completed by 27" November 2009. Give it to the Student Office but keep a stamped
copy and include this in Appendix A.

NAME: Robin Wilson STUDENT NO. 421585588
E-MAIL ADDRESS: rtwlv07@soton.ac.uk

PROJECT TITLE: Automated selection of suitable atmospheric calibration sites for
satellite imagery

PROJECT SUPERVISOR: Prof. E. J. Milton

Note: This report should include a brief description of research aims, a report on progress covering (1)
literature-based research (2) field/laboratory work (3) writing up (4) problems encountered. You might
also like to include a copy of your amended timetable with goals to meet between now and March.

Research Aims:

Aim: To develop an automated system to identify suitable targets for atmospheric
correction of medium and high resolution satellite imagery.

Three objectives have been formulated:

1. To develop a set of criteria which can be used to select calibration sites for
atmospheric correction.

2. To implement a classification based on these criteria using ENVI/IDL and eCognition.

3. To assess the quality of the calibration site selection by performing an Empirical Line
Method calibration and comparing it to accuracy results found in the literature.

Literature Progress:

* Read a large number of papers covering the following topics:
Atmospheric correction

Object-based image analysis

Local Indicators of Spatial Correlation (eg. Getis-Ord statistics)
Building roof extraction from DEMs

Spectral endmember extraction algorithms

o

0000

Practical Work Progress:

* Got to know eCognition — using tutorials and other resources

e Acquired all data for four IKONOS scenes, including DEMs

« Programmed Getis routine with variable window size option in IDL

+ Experimented with producing Getis images at various window sizes, and found
problem with ranking of Getis images

* Investigated PPI, SMACC and other endmember extraction routines. Eventually
decided SMACC was best suited.
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.

Programmed routines to automatically create SMACC images and then create
percentile-threshold-based classification images from them

Brought data into eCognition and tried various possibilities of how to classify it
Wrote code to create a complete image for import into eCognition from the IKONOS file
Investigated how to create slope and aspect images in ENVI

Tried lots of methods to try and exclude sawtooth roofs — eventually found one that
worked using the CV of slope and the CV of aspect.

Found and fixed many bugs in my code, all of which were suddenly activated by
excluding the DEM image from the processing.

Investigated RGB image of suitable calibration sites for use as visualisation — both in
ENVI and ArcGIS.

Created false IKONOS image using Eagle data

Writing Up Progress:

Written first draft of:

o Introduction

o Literature Review
In the process of writing the method — although some parts of this need to wait until all
methodological work is finied

Problems Encountered:

A number of problematic bugs in my code — all known bugs fixed now though.
eCognition not working properly, and crashing when performing various functions —
workarounds successfully put in place.

Creating a fake IKONOS image is far more difficult than | thought — and therefore is
taking a lot more time than | had allowed in my timetable. This work is ongoing, in
consultation with my supervisor.

Clever methods of building roof type extraction from DEMSs are not possible to
implement using eCognition — but another simpler method has been found which does
work.

Work from other modules is taking my time away from my dissertation, and causing me
to become behind schedule. This is an ongoing problem that | need to deal with by
using good time-management skills.

Updated Timetable

Task | Deadline

Practical Work
Develop method of importing calibration sites to ENVI ROIs 25/11/09
Acquire calibrated data for Chilbolton and resample to SPOT bands | 25/11/09
Test ELM on false IKONOS image 25/11/09
Test ELM on SPOT image 25/11/09
Calculate statistics of calibration accuracy for false IKONOS and 01/12/09
SPOT images

Finish all practical work on computer — except for exporting pretty 01/12/09
images to go in report

Written work

Complete first draft of Methodology 12/12/09

Complete first draft of Results 06/01/10
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7
Complete first draft of Discussion 06/01/10
F Complete first draft of Conclusion 06/01/10
Complete first draft of Appendices (including progress forms, code | 01/02/10
and any extra maths — for example explanation of the Getis
problem)
Complete second draft of entire project 14/02/10
Complete first draft of poster for RSPSoc Student Conference 01/03/10
Complete third draft of entire project 01/03/10
Have project completely finished and ready to hand in 07/03/10
Hand in project 15/03/10
Signature of Supervisor A/}/L’u'b\/ pate _ 2%/it/oq
Signature of Student Q{,k/\ Date ?1! i !OC\
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11 Appendix B: Getis statistic problem
The calculation of Getis statistics takes into account the brightness of the pixels in the
area compared to the rest of the image, and gives large positive results for bright

uniform areas and large negative results for dark uniform.

11.1 Problem Statement
The brightness of the area appears to have a larger influence on the Getis statistic than
the uniformity of the area. That is, a very bright and relatively uniform area will have a

higher Getis value than an area which is not quite as bright, but very uniform.

11.2 Investigation

Various small (10 x 10 pixel) images were created to test the effects of brightness on
the value of the Getis statistic. In all cases, the pixel values in the image were chosen
using a random number generator (in range 0-255), except for the areas of interest

which were manually set to certain values.

The tests were carried out using both the Getis statistic function in ENVI and the Getis

statistic code written by the author.

11.2.1 Test 1
Two 3 x 3 pixel test areas were created in the image. The values of each of these areas

are shown in Table 13 it can be seen that Area 2 is more uniform than Area 1.

Table 13 - Pixel values for both areas used in Test 1 of the Getis statistic problem

Areal Area 2
255 | 240 | 250 240 | 240 | 240
249 | 248 | 245 240 | 240 | 240
252 | 255 | 251 240 | 240 | 240

However, when the Getis statistics are calculated, Area 1 has a higher Getis statistic

than Area 2 (0.0797 and 0.0711 respectively).

11.2.2 Test 2
Another test was carried out to check if the problem occurred only for very large pixel

values (as the previous test used values near the limit of 255). Again, two 3 x 3 pixel
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test areas were created in the image, in different locations in the image this time.

Again, Area 2 is more uniform than Area 1.

Table 14 - Pixel values for both areas used in Test 2 of the Getis statistic problem

Areal Area 2
200 | 205 | 203 200 | 200 | 200
202 | 201 | 208 200 | 200 | 200
199 | 198 | 200 200 | 200 | 200

Again, when the Getis statistics are calculated, Area 1 has a higher Getis statistic than

Area 2 (0.0417 compared to 0.0408).

11.2.3 Further Tests
Other tests have been carried out, and they show that this problem is not caused by
Area 2 always being perfectly uniform: it occurs even when Area 2 has some slightly

different values.

11.3 Impact

It could be argued that the differences between the Getis statistics for these areas are
small, but if the Getis statistic is used to rank the most uniform areas in the image then
the ranking will be changed by this problem. This was the reason that the threshold-
based method for selecting areas was chosen, as areas cannot be reliably ranked using

the Getis statistic values.
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12 Appendix C: Shrunk calibration site analysis

It was noted in the literature review that Slater (1980) suggested that a ratio of sensor
resolution to target size of 1:8 was needed to ensure that four pixels remained
uncontaminated in the centre of the target, but in the quantitative testing used in this
project the entire calibration site ROl was used, possibly including contaminated pixels.
Therefore, a routine has been developed to shrink a ROl by a configurable number of
pixels around its edge. This will allow the edge pixels to be excluded from the

calibration, possibly leading to increases in the accuracy.

Therefore, a subproject was created to investigate the effect on the calibration
accuracy of shrinking the calibration sites in an attempt to remove neighbourhood
effects. These effects are introduced through the Point Spread Function (PSF), which

represents the contribution of adjacent pixels to the pixel under observation.

Ruiz and Lopez (2002) derived the PSF of the SPOT sensor empirically, and found that it
could cause considerable adjacency effects on the image. The central part of their PSF
table is reproduced in Table 15, and shows that the contribution of the central pixel to
the resulting DN is only 65%, and that up to 4.5% can come from each of the four
orthogonally surrounding pixels.

Table 15 - Extract from the central section of the SPOT PSF derived by Ruiz and Lopez (Ruiz & Lopez, 2002). The

shaded cell represents the pixel the sensor is observing.

0.0009 | 0.0016 | 0.0236 | 0.0016 | 0.0009

0.0016 | 0.0031 | 0.0448 | 0.0031 | 0.0016

0.0236 | 0.0448 | 0.6513 | 0.0448 | 0.0236

0.0016 | 0.0031 | 0.0448 | 0.0031 | 0.0016

0.0009 | 0.0016 | 0.0236 | 0.0016 | 0.0009

From Table 15 it can be seen that the majority of the adjacency effect comes from the
pixels which are directly adjacent, therefore it was decided to shrink each of the
calibration sites by one pixel around their perimeter, and then run the calibration
again. Percentage errors were then calculated using the same validation sites used in

the main study.
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Table 16 shows the absolute differences between the percentage errors. Negative
values indicate an improvement in this version. It can be seen that overall the accuracy
decreased by a small amount, but that there were some significant increases for
certain bands and validation sites. For example, the percentage error of the NIR band
for the water site decreased by almost 20 percentage points. However, it should also
be noted that the percentage error for the green band of this site increased by over

10%.

Table 16 - Differences between the percentage error for the normal calibration and the calibration with shrunk

calibration sites. Differences are absolute differences in percentage points

Vegetation | Impervious | Water | Average
Green -3.52 -0.98 | 10.22 1.91
Red 6.55 0.87 | 10.98 6.13
NIR -0.39 0.04 | -19.27 -6.54
Average 0.88 -0.02 0.64 0.50

The results of this sub-project appear to be inconclusive. Shrinking the calibration sites
seems to improve the accuracies in certain cases, but makes them significantly worse
in other cases. Obviously, adjacency effects should be avoided if possible, but it seems
that shrinking the calibration sites to remove these effects is not a good way of

increasing the calibration accuracy.
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13 Appendix D: IDL Source Code
The code below was written to support this dissertation. Many of the routines created
will be useful for other projects, and will be released as part of RTWTools for ENVI

(Wilson, 2009) with user-friendly graphical user interfaces added.

CM_REPLICATE, an extension of the IDL REPLICATE routine written by Craig Markwardt
is used in the routines below (see

http://cow.physics.wisc.edu/~craigm/idl/arrays.html).

Getis Statistic Calculation NewGetis.pro
PRO NEWGETIS, event

; Use the ENVI dialog box to select a file

ENVI_SELECT, fid=file,dims=dims,pos=pos, m_Ffid=m_fFfid,
m_pos=m_pos, /mask, title="Select the iImage you want to
perform the Getis calculation on”

; IT the dialog box was cancelled then stop the procedure
IF file[O] EQ -1 THEN RETURN

; Create dialog box window
TLB = WIDGET_AUTO_BASE(title=""Create Getis Image'™)

; Create dropdown list to select distance value
list = ['d = 1 (3x3 square)”, *d = 2 (bx5 square)”, *d = 3
(7x7 square) "]

W_Distance = WIDGET PMENU(TLB, /AUTO_MANAGE, list=list,
uvalue="d")

; Create the widget to let the user select file or memory
output
W_FileOrMem = WIDGET_OUTFM(TLB, ZAUTO_MANAGE, uvalue="fm")

; Start the automatic management of the window
result = AUTO_WID_MNG(TLB)

; IT the OK button was pressed
IF result.accept EQ O THEN RETURN
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; Get the details of the file, ready to write to the disk
1T needed

ENVI_FILE_QUERY, fTile, fname=fname, data_ type=data_type,
xstart=xstart, $

ystart=ystart, INTERLEAVE=interleave

; Get the map info of the file so that we can output it to
the new file
map_info = ENVI_GET_MAP_INFO(FID=Fi1le)

; Initialise the progress bar window - differently
depending if the output is

; to memory or to file

IF result.fm_in_memory EQ 1 THEN BEGIN

ENVI_REPORT_INIT, [“Input File: * + fname, "“Output to
memory~], title="Getis status”, base=base, /INTERRUPT

ENDIF ELSE BEGIN

ENVI_REPORT_INIT, [“Input File: * + fname, "“Output File: *©
+ result.fm.name], title="Getis status”, base=base,
/INTERRUPT

ENDELSE

; Call the function to create the Getis image
Getislmage = CREATE_GETIS_IMAGE(file, dims, pos, result.d
+ 1, base, m_fid, m_pos)

IF result.fm_in_memory EQ 1 THEN BEGIN

; IT the user wanted the result to go to memory then just
output i1t there

ENVI_ENTER_DATA, Getislmage

ENDIF ELSE BEGIN

; IT the output is to file then open the file, write the
binary data

; and close the file

OpenW, unit, result.fm.name, /GET_LUN

WriteU, unit, Getislmage

FREE_LUN, unit

; Then calculate the values needed to create the header
file, and create it
NSamples = dims[2] - dims[1] + 1
NLines = dims[4] - dims[3] + 1

NBands = N_ELEMENTS(pos)
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ENVI_SETUP_HEAD, FNAME=result.fm_name, NS=NSamples,
NL=NLines, NB=NBands, $
DATA TYPE=4, offset=0, INTERLEAVE=iInterleave, $
XSTART=xstart+dims[1], YSTART=ystart+dims[3], $
DESCRIP="Getis Image Output’™, MAP_INFO=map_info, /OPEN,
/WRITE
ENDELSE
END

FUNCTION NEWGETIS_NOGUI, file, dims, pos, m_fid, m_pos,
distance

; Get the details of the file, ready to write to the disk
ENVI_FILE _QUERY, file, fname=fname, data type=data_type,
xstart=xstart, $

ystart=ystart, INTERLEAVE=Interleave

; Get the map info of the file so that we can output It to
the new file

map_info = ENVI_GET_MAP_INFO(FID=File)

output _file = fname +
strcompress(string(distance)) + ".bsq

_getis_distance " +

; Initialise the progress bar window
ENVI_REPORT_INIT, [“Input File: ° + fname, "“Output File: *
+ output_Tfile], title="Getis status®, base=base, /INTERRUPT

; Call the function to create the Getis image - DISTANCE
HARD CODED AS 1

Getislmage = CREATE_GETIS_ IMAGE(file, dims, pos, distance,
base, m_fid, m_pos)

help, Getislmage

; IT the output i1s to file then open the file, write the
binary data

; and close the file

OpenW, unit, output_file, /GET_LUN

WriteU, unit, Getislmage

FREE_LUN, unit

: Then calculate the values needed to create the header
file, and create it
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NSamples = dims[2] - dims[1] + 1

NLines = dims[4] - dims[3] + 1

NBands = N_ELEMENTS(pos)

ENVI_SETUP_HEAD, FNAME=output_ file, NS=NSamples,
NL=NLines, NB=NBands, $

DATA_TYPE=4, offset=0, INTERLEAVE=interleave, $
XSTART=xstart+dims[1], YSTART=ystart+dims[3], $

DESCRIP="CGetis Image Output’™, MAP_INFO=map_info, /OPEN,
/WRITE

ENVI_OPEN_FILE, output_file, r_fid=Fid

return, fid
END

; Creates a Getis 1mage given a FID, the dimensions of the
file, a distance to use for the getis routine

; and a base window to send progress updates to as well as
a fid and pos for the mask (if any)

FUNCTION CREATE_GETIS IMAGE, file, dims, pos, distance,
report_base, m_fid, m_pos

NumRows = dims[2] - dims[1]

NumCols = dims[4] - dims[3]

NumPos = N_ELEMENTS(pos)
print, NumPos

; Let the progress bar know how many bands we"re dealing
with (denom. of fraction)
ENVI_REPORT_INC, report_base, NumPos

FOR CurrPos = 0, NumPos - 1 DO BEGIN

; Send an update to the progress window telling it to let
us know 1f cancel has been pressed

ENVI_REPORT_STAT, report_base, CurrPos, NumPos

; Get the data for the current band
WholeBand = ENVI_GET_DATA(fid=file, dims=dims,
pos=pos[CurrPos])

; Get the global mean
GlobMean = MEAN(WholeBand)
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; Get the global variance
Globvarirance = VARIANCE(WholeBand)

; Get the number of values 1In the whole image
GlobNumber = NumRows * NumCols

; Converts a distance to the length of each side of the
square

; Eg. A distance of 1 to a length of 3

DimOfArray = (distance * 2) + 1

NumOfElements = DimOfArray * DimOfArray

; Create the kernel for the summing CONVOL operation
Kernel = FLTARR(DimOfArray, DimOfArray)
Kernel = Kernel + 1

; Create an image where each element is the sum of the
elements within

; d around 1t
SummedImage = CONVOL(FLOAT(WholeBand), Kernel, /CENTER,

/EDGE_TRUNCATE)

; Create an image where each element is the result of the
top fraction part

; of the getis formula

TopFraction = SummedImage - (FLOAT(NumOfElements) *

GlobMean)

; Calculate the square root bit of the formula and then
create a single variable

; with the bottom fraction part of the formula (this is
constant for all pixels)

SquareRootAnswer = SQRT((FLOAT(NumOfElements) *
(GlobNumber - NumOfElements))/(GlobNumber - 1))
BottomFraction = GlobVariance * SquareRootAnswer

; Create an image with the getis values in it
Getis = FLOAT(TopFraction) / BottomFraction

; IT it"s the First time then copy the Getis result to
OutputArray,
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; 1T not then append it to the end of OutputArray
IF (CurrPos EQ 0) THEN OutputArray = Getis ELSE

OutputArray = [ [[OutputArray]], [[Getis]] ]
ENDFOR

; Perform the masking (if needed)

iT m_fid NE -1 THEN BEGIN

; Load the mask band

ENVI_FILE_QUERY, m_fid, dims=dims

MaskBand = ENVI_GET_DATA(fid=m_fid, dims=dims, pos=m_pos)

;Apply the mask for each of the bands

FOR 1=0, NumPos -1 DO BEGIN

OutputArray[*, *, 1] = MaskBand AND OutputArray[*, *, i]
ENDFOR

endif

; Close the progress window
ENVI_REPORT_INIT,base=report_base, /FINISH

: Return the result
RETURN, OutputArray
END

ROI Percentile Threshold roi_percentile_threshold.pro
FUNCTION ROI PERCENTILE THRESHOLD, percentage, name, color,
fid=fid, dims=dims, pos=pos,
ensure_above_zero=ensure_above_zero,
ensure_below_zero=ensure_below_zero, bottom=bottom

orig_image _data = ENVI_GET DATA(Ffid=fid, dims=dims,
pos=pos)

iT KEYWORD SET(ensure_below _zero) THEN image_data
orig_image_data[WHERE(orig_image_data LT 0)] ELSE
image_data = orig_image_data

1T KEYWORD_SET(ensure_above zero) THEN image_data
orig_image_data[WHERE(orig_image _data GT 0)] ELSE
image_data = orig_image_data

1T KEYWORD_SET(bottom) THEN sorted_image_indices =
SORT(image_data) ELSE sorted_image_indices =
REVERSE(SORT(image_data))

Page 102 of 114



Robin Wilson 421985588

len = N_ELEMENTS(image_data)

threshold = image_data[sorted_image_ indices[percentage/100
* len]]

print, threshold

if KEYWORD SET(bottom) THEN BEGIN

ENVI_DOIT, "ROI_THRESH DOIT®, dims=dims, fid=fid, pos=pos,
min_thresh=MIN(orig_image _data), $

max_thresh=threshold, ROl _ID=roi_id, ROI_NAME=name,
ROI_COLOR=color, /NO_QUERY

ENDIF ELSE BEGIN

ENVI_DOIT, "ROI_THRESH DOIT®, dims=dims, fid=fid, pos=pos,
$

min_thresh=threshold, max_thresh=MAX(orig_image_data),
ROI_ID=roi_id, ROl_NAME=name, ROIl_COLOR=color, /NO_QUERY

ENDELSE

return, roi_id
END

Automatically create all files needed for eCognition create_files_for_ecog.pro
PRO CREATE_FILES _FOR_ECOG, smacc_percentage,
getis_top_percentage, getis_bottom percentage,
getis_distance, out file

; Open a dialog box to allow the input IKONOS file to be
selected, along with a mask 1f needed

ENVI_SELECT, fid=fid, dims=dims, pos=pos, /mask,
m_Ffid=m_fid, m_pos=m_pos, title="Select the image,
excluding the DEM band"

; IT the dialog was cancelled then just exit
IF fid EQ -1 THEN RETURN

; Open a dialog box to allow the input DEM band to be
selected

ENVI_SELECT, fid=dem_fid, dims=dem_dims, pos=dem_pos,
title="Select the DEM band", /band_only

; IT the dialog was cancelled then just exit
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IF fid EQ -1 THEN RETURN

; Create the SMACC classification image
smacc_class_fid = CREATE_SMACC_CLASS_ IMAGE(fid, dims, pos,
m_fid, m_pos, smacc_percentage)

; Create the Getis classification image

getis_class_fid = CREATE GETIS CLASS IMAGE(Fid, dims, pos,
m_fid, m_pos, getis_top_percentage,
getis_bottom percentage, getis_distance)

; Create the slope and aspect images
slope_aspect_fid = CREATE SLOPE ASPECT IMAGES(dem_fid,
dem_pos)

; Layerstack the above three outputs together, appended on
to the end of the original I1KONOS+DEM file
LAYERSTACK_FILES, [fid, smacc_class_fTid, getis _class_fid,
slope_aspect_fid], out _file
END

Layerstack all the files given in parameters layerstack_files.pro

; Layerstack every band of the array of fids (input_fids)
together 1Into a specified output file.

PRO LAYERSTACK FILES, input_fids, out_name

total_nb =0

FOR i=0, N_ELEMENTS(input_fids) - 1 DO BEGIN
ENVI_FILE_QUERY, input_fids[i], nb=nb, ns=ns, nl=nl,
dims=r_dims

pos_to concat = lindgen(nb)

fids_to _concat = replicate(input_fids[i], nb)

total nb = total nb + nb

; IT it"s the first time through then init the arrays
IF 1 EQ O THEN BEGIN

output_pos = pos_to_concat

output_fids = fids_to _concat

ENDIF ELSE BEGIN

output_pos = [output pos, pos_to concat]

output_fids = [output_fids, fids_to concat]

ENDELSE

ENDFOR
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; We"re assuming that we want the output file to be the
same dims as the last input file - as all the input
; Files will be the same size.

output_dims = cmreplicate(r_dims, total_nb)

; Take the projection from the first fTile
projection = ENVI_GET_PROJECTION(Fid=input_fids[0],
pixel_size=pixel_size)

ENVI_DOIT, "ENVI_LAYER _STACKING DOIT", fid=output_ Ffids,
pos=output_pos, dims=output dims, $

out_dt=4, out name=out _name, out ps=pixel_size, $
out_proj=projection, r_fid=r_fid

END

Create threshold image for high and low Getis values create_getis_class_image.pro
@NewGetis

FUNCTION CREATE GETIS CLASS IMAGE, fid, dims, pos, m_fid,
m_pos, top_percentage, bottom_ percentage, distance

; IT this file 1s being run manually then the following
must be run first to set up the variables correctly

; ENVI_SELECT, fid=fid,dims=dims,pos=pos, /mask,
m_fid=m_fid, m_pos=m_pos

; Get the fTilename of the selected file
ENVI_FILE_QUERY, fid, fname=fname

; Create the Getis image, and return the fid of the newly
Created 1mage

getis_fid = NEWGETIS_NOGUI(fid, dims, pos, m_fid, m_pos,
distance)

; Initialise the color variable for selecting ROl colors
color = 3

; Get the number of bands of the Getis image
ENVI_FILE_QUERY, getis_fid, nb=nb

; Create the arrays ready to hold the band lists and the
ROI IDs
pos = lindgen(nb)
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top_roi_ids = lonarr(N_ELEMENTS(pos))
bottom_roi_ids = lonarr(N_ELEMENTS(pos))

; For each band in the Getis image

FOR 1=0, N_ELEMENTS(pos)-1 DO BEGIN

print, "Doing band " + string(i)

; Get the high Getis values (bright uniform areas)

top_roil = ROI PERCENTILE THRESHOLD(top_ percentage, '‘Band ™
+ strcompress(string(pos[i])) + " top"™, color,
fid=getis_fid, dims=dims, pos=pos[i], /ensure_above_ zero)

; Set up the new colour for the next ROl and add to the
list of the Top ROIs

color = color + 1

top_roi_ids[i] = top_roi

; Get the low Getis values (dark uniform areas)

bottom_roi = ROl PERCENTILE THRESHOLD(bottom_ percentage,
"Band " + strcompress(string(pos[i])) + ™ bottom'™, color,
fid=getis_fid, dims=dims, pos=pos[i], /bottom,
/ensure_below_zero)

; Set up the new colour for the next ROl and add to the
list of the Bottom ROIs

color = color + 1

bottom roi_ids = bottom_roi

ENDFOR

; Initialise an array to store the FIDs of the created
classification images
fids = lonarr(2)

; Export the bottom ROIls

ENVI_DOIT, “ENVI_ROI_TO_ IMAGE_DOIT",
class_values=replicate(l, N_ELEMENTS(pos)), FID=getis_fid,
ROI_IDS=bottom_roi_ids,
out_name=fname+''BottomGetisClass.bsq", r_fid=r_fid

fids[0] = r_fid

; Export the top ROIls
ENVI_DOIT, “ENVI_ROI_TO_ IMAGE_DOIT",
class_values=replicate(l, N_ELEMENTS(pos)), FID=getis_fid,
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ROI1_IDS=top_roi_ids, out_name=fname+"TopGetisClass.bsq",
r_fid=r_fid
fids[1] = r_fid

; Do the layerstacking of the classification images

poss = lonarr(N_ELEMENTS(Ffids))
dims lonarr(5, N_ELEMENTS(fids))

FOR 1=0, N_ELEMENTS(fids)-1 DO BEGIN
ENVI_FILE_QUERY, fids[i], nb=nb, dims=r_dims
poss[i] = nb - 1

print, nb -1

dims[*, 1] = r_dims

ENDFOR

projection = ENVI_GET_PROJECTION(fid=fi1ds[0],
pixel _size=pixel_size)

ENVI_DOIT, "ENVI_LAYER STACKING DOIT®, fid=fids, pos=poss,
dims=dims, $

out_dt=1, out_name=fname+" GetisClassStacked.bsq",
out_ps=pixel_size, $

out_proj=projection, r_Ffid=r_fid

; Return the layerstacked image with both the high and low
Getis classifications in it
return, r_fid

END

Create threshold for the high SMACC values create_smacc_class_image.pro

@CREATE_SMACC_ROI1_CLASS_IMAGE
FUNCTION CREATE_SMACC_CLASS IMAGE, fid, dims, pos, m_fid,
m_pos, percentage

; IT this file 1s being run manually then the following
must be run first to set up the variables correctly

; ENVI_SELECT, fid=fid,dims=dims,pos=pos, /mask,
m_Ffid=m_fid, m_pos=m_pos

; Get the filename of the given fTile
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ENVI_FILE_QUERY, fid, fname=fname

; Perform the SMACC endmember extraction asking for 4
endmembers, with the constraint of

; summing to unity

ENVI_DOIT, "ENVI_SMACC DOIT™, m_fid=m_¥fid, m_pos=m_pos,
fid=Fid, dims=dims, pos=pos, $

n_endmembers=4, abund_name=fname+" abund.bsq",
abund_r_fid=abund_fid, method=2, $

out_name=fname+" speclib.sli”, r_fid=r_fid

; Find out how many bands the image has (in case the
number of endmembers above has been changed)
ENVI_FILE _QUERY, abund_fid, dims=r_dims, nb=nb

; Create a list of all the bands iIn the image so that all
of them can be processed
smacc_pos = lindgen(nb)

; Create the classification image from the SMACC image
r_fid = CREATE_SMACC ROl _CLASS IMAGE(percentage,
abund_fid, r_dims, smacc_pos)

; Return the FID of the classification image
return, r_fid
END

Perform the threshold processing for the SMACC create_smacc_roi_class_image.pro
threshold image creation
FUNCTION CREATE_SMACC ROl _CLASS_ IMAGE, percentage, fid,
dims, pos
; IT the dialog box was cancelled then stop the procedure
IF fi1d[0] EQ -1 THEN RETURN, -1

ENVI_FILE_QUERY, fid, fname=fname

; Create an array to hold the roi_ids returned by the
Percentile Threshold function
roi_ids=lonarr(n_elements(pos))

: For each band...
FOR 1=0, N_ELEMENTS(pos)-1 DO BEGIN
; Create a name for the ROI
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name = ""Band " + STRCOMPRESS(STRING(1)) + " " +
STRCOMPRESS(STRING(percentage, FORMAT="(f5.3)")) + "%"

print, name

;Create the ROl using a percentile threshold
roi_id = ROl PERCENTILE THRESHOLD(percentage, name, 2+i,
fid=fid, dims=dims, pos=pos[i], Zensure_above zero)

; Put the ROl ID into the array
roi_ids[i] = roi_id
ENDFOR

; Convert the ROIs to a classification image where every
pixel that i1s in any of the ROls gets given a value of 1
ENVI_DOIT, “ENVI_ROI_TO_ IMAGE DOIT",
class_values=replicate(long(1l), N_ELEMENTS(pos)), FID=Fid,
RO1_IDS=roi_1ids, out_name=fname+"” SMACC Classlmage.bsq",
r_fid=r_fTid

return, r_fid
END

Create slope and aspect images create_slope_aspect_images.pro
; Takes the fid, pos and dims of a DEM band and creates
slope and aspect images from it
FUNCTION CREATE SLOPE ASPECT IMAGES, dem_fid, dem_pos
; Get the name and dimensions of the DEM band
ENVI_FILE_QUERY, dem_fid, fname=fname, dims=dem_dims

; Get the pixel size of the DEM band
projection = ENVI_GET_PROJECTION(fid=dem_fid,
pixel_size=pixel_size)

; Perform the topographic processing, outputting to a file
ENVI_DOIT, "TOPO DOIT", BPTR=[0,1], fid=dem_fid,
pos=dem_pos, $

out_name=fname+" slope aspect.bsq', dims=dem_dims,
r_fid=r_fid, $

kernel _size=3, pixel_size=pixel_size

; Return the FID of the file created above
return, r_fid
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END

Convert Shapefile to individual ROIs shp_to_roi.pro
; The procedure below i1s specifically written to work with
.shp files exported

; From eCognition for a project by Robin Wilson, and may
not work for other uses

; The 1dea is that the shape file, and the image file to
associate the ROIs with

; are passed to the procedure, and an individual ROl for
each shape file polygon

; 1S created. However, there iIs attribute checking (see
notes in comments), so it

; doesn"t do all of the iInput shapefile.

; Adapted from class _image stats.pro by Andy Pursch,
available at
http://www. ittvis.com/UserCommunity/CodeLibrary.aspx

PRO SHP_TO ROI, shape_ file, image fTile
; Return to the calling program if there is an error
ON_ERROR, 2

; Open (and check) the image file.

ENVI_OPEN_FILE, image_ file, r_fid=fid,
/no_interactive_query, /no_realize

IF fid EQ -1 THEN BEGIN

void = DIALOG_MESSAGE("Unable to open image file", Zerror)
RETURN

ENDIF

; Retrieve information about the file
ENVI_FILE_QUERY, fid, file_type=Ffile_type, nl=num_lines, $
ns=num_samps, num_classes=num_classes

; Open (and check) the shape file. Use the IDL shapefile
object since ENVI*®s

; shapefile APl is not exposed to the user.
shape_file _obj = 0BJ NEW("idIffshape®, shape File)

IF NOT OBJ_VALID(shape_file_obj) THEN BEGIN

void = DIALOG_MESSAGE("Unable to access shape file",
/error)

RETURN
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ENDIF

; Get the number of entities and the entity type.
shape_file obj->GetProperty, N _ENTITIES=num ent, $
ENTITY_TYPE=ent_type

: Get the Info for all attributes.

shape_file_obj->GetProperty, ATTRIBUTE_INFO=attr_info

; Loop through the entities, converting each to an ROI,
getting/computing the stats,

; writing out the stats.

icnt=0

ENVI_BATCH_STATUS_WINDOW, /ON

repStr="Processing Classification Image-
ENVI_REPORT_INIT,repStr,BASE=repBase, TITLE="Calculating
ROl Statistics”

ENVI1_REPORT_INC, repBase,num_ent
WIDGET_CONTROL , /HOURGLASS

; Start looping over all individual cells from the

shapefile
FOR 1=0, num_ent-1 DO BEGIN

; Update the processing status bar
ENVI_REPORT_STAT,repBase,i, num_ent-1

; First, get the vertices for the entity.

this_entity = shape_file_obj -> GeteEntity(i) ; Could add
the attributes keyword here.

these_vertices = *(this_entity.vertices)

attr = shape_file_obj->getAttributes( 1)

; Check the attributes. ITf the best class field i1s -1 then
a class was not

; assigned.

IF attr.attribute_2 EQ -1 THEN CONTINUE ; ELSE $

;IF attr.attribute 2 EQ 1 THEN name = "bright"™ ELSE $

;IF attr._attribute 2 EQ 2 THEN name = "dark"

print, ""these vertices"
print, these vertices
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reform(these_vertices[0,*])
reform(these_vertices[1,*])

x_TFile_coords
y_Tile_coords

;X_File_coords = num_samps - x_Ffile_coords
y_File_coords = num_lines - y file_coords

; Do shape file polygon entities get returned as a closed
; set of coordinates or i1f 1t"s just implicit, let"s
check. ROIs require

; polygons to be explicitly closed.

last_element_index = N_ELEMENTS(x_file_coords)-1

IF x_file_coords[0] NE x_file_coords[last_element_index]
THEN BEGIN

x_File_coords = [x_Ffile_coords, x file_coords[0]]
y_Tile_coords [y _file coords, y file coords|[0]]

ENDIF

print, "HELLO, ROBIN HERE!""
print, x_file_coords

; Since the overlay grid covers a larger geographic extent
than the image some of the

; polygons will lie off the image. We can skip them.

IF TOTAL(x_file_coords LT 0) EQ O AND TOTAL(y_file_coords
LT O) EQ O AND $

TOTAL(x_File_coords GT NUM_SAMPS) EQ O AND
TOTAL(y_Ffile_coords GT NUM_LINES) EQ O THEN BEGIN

; define counter for the the number of valid ROIls

icnt++

; Now that we"re in file coordinates, make an roi.
this_roi_id = ENVI_CREATE_ROI(nl=num_lines, ns=num_samps,
name=attr.attribute_l+string(i))

ENVI_DEFINE_ROI, this _roi_id, /polygon,
xpts=x_fFfile_coords, ypts=y file_coords

print, " LA
print, x_file_coords

ENDIF
ENDFOR
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ENVI_REPORT_INIT,BASE=repBase,/FINISH

; Destroy shapefile object to free up memory
OBJ_DESTROY, shape_ file_obj

PRINT, "Total number of Valid ROls found: *, icnt
END

Shrink ROIs shrink_roi.pro
; Shrink an individual ROl from the file specified with fid
PRO SHRINK ROIl, fid, roi_id

; Get the number of samples

ENVI_FILE _QUERY, fid, ns=ns, nl=nl

; Get the array of 1D points then convert them to actual X
and y co-ords
points = ENVI_GET_ROI(roi_id)

; IT there are no points in the ROl then exit
it points[0] EQ -1 THEN RETURN

; Create the image array
image_array = intarr(ns, nl)

; Extract the point indices to X and Y co-ordinates
point_indices = ARRAY_INDICES(image_array, points)

; Set the area covered by the ROl to 1 in the image_array
image_array[point_indices[0, *], point_indices[1l, *]] = 1

; Create the kernel for the summing CONVOL operation - no
diagonals
Kernel = FLTARR(3, 3)

Kernel[O, *] = [0, 1, O]
Kernel[1, *] = [1, 1, 1]
Kernel[2, *] = [0, 1, O]

; Create an i1mage where each element is the sum of the
elements within
; d around it
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summed_image = CONVOL(image array, Kernel, /CENTER,
/EDGE_TRUNCATE)

; Select the indices where the pixels are entirely
surrounded by other pixels

; That 1s, all the pixels we want to keep in the shrunk
ROI

where_answer = WHERE(summed_ image EQ 5, count)

IF count EQ O THEN RETURN
new_indices = ARRAY INDICES(summed_image, where_answer)
; Extract the X and Y indices from the array

new_x_indices = reform(new_indices[0, *])
new_y_indices = reform(new_indices[1, *])

; Create the new ROl and associated the points with it

new_roi_id = ENVI_CREATE_ROI(nl=nl, ns=ns, name="Shrunk
ROI™)

ENVI_DEFINE_ROI, new_roi_id, /point, xpts=new_Xx_ indices,
ypts=new_y_ indices
END

; Shrink all the ROls associated with an image
PRO SHRINK_ALL ROIS

; Select the file the ROIs are associated with
ENVI_SELECT, fid=Ffid

; Get the list of ROIs and run through i1t shrinking all of
them

roi_ids = ENVI_GET_ROIl__IDS(fid=fid)

FOR 1 = O, N_ELEMENTS(roi_ids) - 1 DO BEGIN

print, "DOING ROI ID ™, roi_ids[i]

SHRINK_ROI, fid, roi_ids[i]

ENDFOR
END
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